Skip to main content
Log in

A Novel Hybrid MPPT Controller Based on Bond Graph and Fuzzy Logic in Proton Exchange Membrane Fuel Cell System: Experimental Validation

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Traditional MPPT algorithms have demonstrated effective performance relative to their flexibility and simplicity of implementation. However, its main disadvantages are the ineffectiveness and the large oscillations around the maximum power point under rapidly changing operating conditions. In order to achieve better performance in power production from a proton exchange membrane fuel cell system (PEMFC), we propose in this work a new hybrid controller focused on the bond graph and fuzzy logic (BG-FL-MPPT) to track the maximum power point under different weather conditions. The aim of the research is BG-FL-MPPT development, which will guarantee the optimum power reference operation of the system with greater efficiency, less error in the stability and voltage fluctuations. A rigorous comparison was made between the developed controller and the other three MPPT algorithms, including particle swarm optimization, fuzzy logic controller and Perturb and Observe, in three distinct test scenarios to check the effectiveness of the suggested controller. In terms of stability and robustness, it was found from the results obtained that the established controller assures the required operation of the studied system by tracking efficiency of up to 99.95% to achieve the maximum power point. A 90% faster convergence rate is obtained with a decrease in oscillations of 94.95%. The experimental tests were performed using a high-performance experimental platform, and in the same metrological conditions, an in-depth comparison of the experimental results with the results obtained by simulation was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sanjeevikumar, P.; Priyadarshi, N.; Bhaskar, M.S.; Bhaskar, M.S.; Hossain, E.; Azam, F.: A hybrid photovoltaic-fuel cell for grid integration with jaya-based maximum power point tracking: experimental performance evaluation. IEEE Access. 7, 82978–82990 (2019)

    Article  Google Scholar 

  2. Alice Hepzibah, A.; Premkumar, K.: ANFIS current–voltage controlled MPPT algorithm for solar powered brushless DC motor based water pump. Electr. Eng. 102, 421–435 (2020)

    Article  Google Scholar 

  3. Kurnia, J.C.; Sasmito, A.P.; Shamim, T.: Advances in proton exchange membrane fuel cell with dead-end anode operation: a review. Appl. Energy 252, 113416 (2019). https://doi.org/10.1016/j.apenergy.2019.113416

    Article  Google Scholar 

  4. Badoud, A.; Merahi, F.; Ould Bouamama, B.; Mekhilef, S.: Bond graph modeling, design and experimental validation of a photovoltaic/fuel cell/ electrolyzer/battery hybrid power system. Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2021.05.016

    Article  Google Scholar 

  5. Kumar, P.R.; Shankar, C.G.: High-performance single-input three-output DC–DC high gain converter for fuel cell-based electric vehicles. Electr. Eng. 102, 1715–1737 (2020)

    Article  Google Scholar 

  6. Khan, S.S.; Hussain, S.; Ammar Hussein, M.: Dynamic temperature model for proton exchange membrane fuel cell using online variations in load current and ambient temperature. Int. J. Green Energy (2019). https://doi.org/10.1080/15435075.2018.1564141

    Article  Google Scholar 

  7. Karthikeyan, B.; Sundararaju, K.; Palanisamy, R.: ANN-based MPPT Controller for PEM fuel cell energized interleaved resonant PWM high step up DC–DC converter with SVPWM inverter fed induction motor drive. Iran. J. Sci. Technol. Trans. Electr. Eng. (2021). https://doi.org/10.1007/s40998-021-00413-0

    Article  Google Scholar 

  8. Badoud, A.E.; Raison, B.; Lavado Fernando, V.L.; Ould Bouamama, B.; Khemliche, M.: Modeling, simulation and hardware implementation of a bond graph-maximum power point tracker for a photovoltaic panel under partially shaded conditions. Simulation 92, 687–707 (2016)

    Article  Google Scholar 

  9. Dileep, K.M.; Ramulu C.: A hybrid global maximum power point tracking method based on butterfly particle swarm optimization and perturb and observe algorithms for a photovoltaic system under partially shaded conditions. Int. Trans. Electr. Energy Syst. (2020).

  10. Naseri, N.; El Hani, S.; Aghmadi, A.; El Harouri, K.; Heyine, M. S.; Mediouni, H.: Proton exchange membrane fuel cell modelling and power control by P&O algorithm. In: Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; pp. 1–5

  11. Chen, P.C.: Robust integral voltage tracking control for PEM fuel cell systems under varying operating current. Arab. J. Sci. Eng. 39, 3307–3322 (2014). https://doi.org/10.1007/s13369-013-0892-7

    Article  Google Scholar 

  12. Fathy, A.; Abdelkareem, M.A.; Olabi, A.G.; Rezk, H.A.: Novel strategy based on Salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell. Int. J. Hydrogen Energy 46(8), 6087–6099s (2021)

    Article  Google Scholar 

  13. Rana, K.; Kumar, V.; Sehgal, N.; George, S.A.: Novel dPdI feedback based control scheme using GWO tuned PID controller for efficient MPPT of PEM fuel cell. ISA Trans. 93, 312–324 (2019)

    Article  Google Scholar 

  14. Derbeli, M.; Barambones, O.; Sbita, L.: A robust maximum power point tracking control method for a PEM fuel cell power system. Appl. Sci. (2018). https://doi.org/10.3390/app8122449

    Article  Google Scholar 

  15. Ahmadi, S.; Abdi, S.; Kakavand, M.: Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller. Int. J. Hydrogen Energy 42, 20430–20443 (2017)

    Article  Google Scholar 

  16. Wang, M.H.; Huang, M.L.; Liou, K.J.; Jiang, W.J.: Maximum power point tracking control method for proton exchange membrane fuel cell. IET Renew. Power Gen. 10, 908–915 (2016)

    Article  Google Scholar 

  17. Luta, D.N.; Raji, A.: Fuzzy rule-based and particle swarm optimisation MPPT techniques for a fuel cell stack. Energy MDPI Open Access J. 12(5), 1–15 (2019)

    Google Scholar 

  18. Shaw, B.S.: Comparison of SCA-optimized PID and P&O-based MPPT for an off-grid fuel cell system, soft computing in data analytics. Adv. Intell. Syst. Computs. 758, 51–58 (2018). https://doi.org/10.1007/978-981-13-0514-6_6

    Article  Google Scholar 

  19. Harrag, A.; Bahri, H.: Novel neural network IC-based variable step size fuel cell MPPT controller. Int. J. Hydrogen Energy 42, 3549–3563 (2017)

    Article  Google Scholar 

  20. Harrag, A.; Messalti, S.: How fuzzy logic can improve PEM fuel cell MPPT performances? Int. J. Hydrogen Energy 43, 537–550 (2018)

    Article  Google Scholar 

  21. Samal, S.; Ramana, M.; Barik, P.K.: Modeling and simulation of interleaved boost converter with MPPT for fuel cell application. In: Proceedings of the 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, India, 28–30 March 2018; pp. 1–5.

  22. Harrabi, N.; Souissi, M.; Aitouche, A.; Chaabane, M.: Modeling and control of photovoltaic and fuel cell based alternative power systems. Int. J. Hydrogen Energy 43, 11442–11451 (2018)

    Article  Google Scholar 

  23. Priyadarshi, N.; Sharma, A.K.; Azam, F.: A hybrid firefly-asymmetrical fuzzy logic controller based MPPT for PV-wind-fuel grid integration. Int. J. Renew. Energy Res 7, 1546–1560 (2017)

    Google Scholar 

  24. Raj, A.; Lekhaj, P.: An ANFIS based MPPT controller for fuel cell powered induction motor drive. In: Proceedings of the 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Kuala Lumpur, Malaysia, 29 May–1 June 2018; pp. 201–205.

  25. Hua, A.C.; Tsai, B.C.: Design of a wide input range DC/DC converter based on SEPIC topology for fuel cell power conversion. In: The 2010 International Power Electronics Conference (ECCE ASIA), Sapporo, 2010, pp. 311-316https://doi.org/10.1109/IPEC.2010.5542257

  26. Al-Saffar, M.A.; Ismail, E.H.; Sabzali, A.J.; Fardoun, A.A.: An improved topology of SEPIC converter with reduced output voltage ripple. IEEE Trans. Power Electr 23(5), 2377–2386 (2008)

    Article  Google Scholar 

  27. Coban, M.T.; Turgut, O.E.: Optimal proton exchange membrane fuel cell modelling based on hybrid teaching learning based optimization—differential evolution algorithm. Ain Shams Eng. J. 7, 347–360 (2016)

    Article  Google Scholar 

  28. Abdulla, S.; Seepana, M.M.; Patnaikuni, V.S.: Performance comparison of PEM fuel cell with enhanced cross-flow split serpentine and single serpentine flow field designs. Arab. J. Sci. Eng. 45, 7691–7703 (2020). https://doi.org/10.1007/s13369-020-04803-0

    Article  Google Scholar 

  29. Montero-Sousa, J.A.; Aláiz-Moretón, H.; Quintián, H.; González-Ayuso, T.; Novais, P.; Calvo-Rolle, J.L.: Hydrogen consumption prediction of a fuel cell based system with a hybrid intelligent approach. Energy (2020). https://doi.org/10.1016/j.energy.2020.117986

    Article  Google Scholar 

  30. Randall, C.R.; DeCaluwe, S.C.: Physically based modeling of PEMFC cathode catalyst layers: effective microstructure and ionomer structure–property relationship impacts. J. Electrochem. Energy Convers. Storage (2020). https://doi.org/10.1115/1.4046417

    Article  Google Scholar 

  31. Kahraman, H.; Coban, A.: Performance improvement of a single PEM fuel cell using an innovative flow field design methodology. Arab. J. Sci. Eng. 45, 5143–5152 (2020). https://doi.org/10.1007/s13369-020-04368-y

    Article  Google Scholar 

  32. Md Azimur, R.; Felipe, M.; Mrittunjoy, S.; Po-Ya, A.C.: Development of 1-D multiphysics PEMFC model with dry limiting current experimental validation. Electrochim. Acta (2019). https://doi.org/10.1016/j.electacta.2019.134601

    Article  Google Scholar 

  33. Shihua, L.; Tao, C.; Yi, X.: A two-dimensional analytical model of PEMFC with dead-ended anode. Int. J. Green Energy 17, 255–273 (2020). https://doi.org/10.1080/15435075.2020.1722133

    Article  Google Scholar 

  34. Abdollahzadeh, M.; Ribeirinha, P.; Boaventura, M.; Mendes, A.: Three-dimensional modeling of PEMFC with contaminated anode fuel. Energy 152, 939–959 (2018). https://doi.org/10.1016/j.energy.2018.03.162

    Article  Google Scholar 

  35. Oliviera, P.; Bourasseaua, C.; Ould Bouamama, B.: Dynamic and multiphysic PEM electrolysis system modelling: a bond graph approach. Int. J. Hydrogen Energy 42, 14872–14904 (2017)

    Article  Google Scholar 

  36. Ahmad, J.S.; Esam, H.I.; Hussain, M.B.: High voltage step-up integrated double Boost–SEPIC DC–DC converter for fuel-cell and photovoltaic applications. Renew. Energy 82, 44–53 (2015). https://doi.org/10.1016/j.renene.2014.08.034

    Article  Google Scholar 

  37. Rosas-Caro, J.C.; Sanchez, V.M.; Vazquez-Bautista, R.F.; Morales-Mendoza, L.J.; Mayo-Maldonado, J.C.; Garcia-Vite, P.M.; Barbosa, R.: A novel DC-DC multilevel SEPIC converter for PEMFC systems. Int. J. Hydrogen Energy 41, 23401–23408 (2016)

    Article  Google Scholar 

  38. Kocaarslan, I.; Kart, S.; Genc, N.; et al.: Design and application of PEM fuel cell-based cascade boost converter. Electr. Eng. 101, 1323–1332 (2019). https://doi.org/10.1007/s00202-019-00871-0

    Article  Google Scholar 

  39. Kircioğlu, O.; Ünlü, M.; Çamur, S.: Modeling and analysis of DC–DC SEPIC converter with coupled inductors. In: 2016 International Symposium on Industrial Electronics (INDEL), Banja Luka, 2016, pp. 1–5.https://doi.org/10.1109/INDEL.2016.7797807

  40. Umarikar, A.C.; Umanand, L.: Modeling of switching systems in bond graphs using the concept of switched power junctions. J. Frank. Ins. 342(2), 131–147 (2005)

    Article  Google Scholar 

  41. Zrafi, R.; Ghedira, S.; Dhahri, Y.; Besbes, K.: Bond graph based automated modeling of switch-mode power converters using VHDL-AMS. In: Proceedings of the IEEE International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet, Tunisia, 19–21 January 2017.

  42. Asher, G.M.: The robust Modeling of variable topology circuits using bond graphs. In: Proceedings of International Conference on Bond Graph Modeling, San Diego, CA, 1993, pp. 126–131.

  43. Strömberg, J.E.; Top, J.; Söderman, U.: Variable causality in bond graph caused by discrete effects. In: Proceedings of International Conference on Bond Graph Modeling, San Diego, CA, 1993, pp. 115–119.

  44. Dauphin-Tanguy, G.; Sueur, C.; Rombaut, C.: Bond-graph approach of commutation phenomena. IFAC Proc. 22(6), 339–343 (1989). https://doi.org/10.1016/S1474-6670(17)54397-9

    Article  Google Scholar 

  45. Borutzky, W.; Dauphin-Tanguy, G.; Thoma, J.U.: Advances in bond graph modeling theory, software and applications. Math. Comput. Simul. 39, 465–475 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial and technical support offered mostly by Setif Automatic Laboratory, University of Setif1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd Essalam Badoud.

Appendix

Appendix

See Table 5.

Table 5 System operating parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badoud, A.E., Mekhilef, S. & Ould Bouamama, B. A Novel Hybrid MPPT Controller Based on Bond Graph and Fuzzy Logic in Proton Exchange Membrane Fuel Cell System: Experimental Validation. Arab J Sci Eng 47, 3201–3220 (2022). https://doi.org/10.1007/s13369-021-06096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06096-3

Keywords

Navigation