Skip to main content
Log in

Impact of Hall Current on a 3D Casson Nanofluid Flow Past a Rotating Deformable Disk with Variable Characteristics

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The significance of the present investigation is to explore the impacts of the Hall current and variable traits of thermal conductivity and the mass diffusion instead of the constant on a three-dimensional (3D) Darcy–Forchheimer–Casson nanofluid flow past a deformable rotating disk extendable in the radial direction. However, the motion of the flow is induced owing to the rotation and deformation of the disk. The process of heat transfer is inspected in the presence of the Cattaneo–Christov heat and mass fluxes, thermal radiation, and the activation energy amalgamated with chemical reaction added to witness the effect on the mass transfer. The novelty of the model is enhanced with the additional effects of momentum slip and convective boundary conditions. On utilizing the Von Karmann similarity variable, the formulated problem is transformed into ordinary differential equations. A numerical solution for the system of the differential equations is attained by employing the bvp4c function in MATLAB. The upshot of sundry parameters versus involved profiles is deliberated graphically. It is perceived that on escalating the Brownian motion and temperature-dependent thermal conductivity, the temperature field escalates. The velocity field in radial and azimuthal direction decays for up surging the Casson fluid and magnetic parameters. A comparative analysis of the present investigation with an already published work is also added to substantiate the envisioned problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(b\) :

Rate of stretching

\(B_{0}\) :

Magnetic field strength

\(C_{w}\) :

Concentration at the surface of the disk

\(C_{\infty }\) :

Ambient concentration

\(c_{p}\) :

Specific heat

\(c_{b}^{*}\) :

Drag factor

\(D_{{\text{B}}}\) :

Brownian diffusion coefficient

\(D_{{{\text{B}}_{\infty } }}\) :

Ambient diffusion coefficient

\(D_{{\text{T}}}\) :

Thermophoretic diffusion coefficient

\(d\) :

Variable thermal conductivity parameter

\(E_{a}\) :

Coefficient of activation energy

\(E = \frac{{E_{a} }}{\kappa T}\) :

Activation energy parameter

\(e\) :

Variable molecular diffusivity parameter

\(f\) :

Radial velocity profile

\(F = \frac{{c_{b}^{*} }}{{r\sqrt {K^{*} } }}\) :

Non-uniform inertia coefficient

\(F_{r} = \frac{{c_{b}^{*} }}{{\sqrt {K^{*} } }}\) :

Darcy–Forchheimer number

\(h\) :

Axial velocity profile

\(h_{1}\) :

Convective heat transfer coefficient

\(h_{2}\) :

Convective mass transfer coefficient

\(H_{1} = \frac{{h_{1} }}{{k_{\infty } }}\sqrt {\frac{\nu }{\Omega }}\) :

Heat transfer Biot number

\(H_{2} = \frac{{h_{2} }}{{D_{{{\text{B}}_{\infty } }} }}\sqrt {\frac{\nu }{\Omega }}\) :

Mass transfer Biot number

\(Ha = \frac{{\sigma B_{0}^{2} }}{\rho \Omega }\) :

Magnetic parameter

\(j\) :

Tangential velocity profile

\(k\left( T \right)\) :

Variable thermal conductivity

\(K^{*}\) :

Permeability of porous medium

\(K_{1} = \lambda_{1} \Omega\) :

Thermal relaxation parameter

\(K_{2} = \lambda_{2} \Omega\) :

Concentration relaxation parameter

\(k_{r}^{2}\) :

Chemical reaction rate

\(L = S\sqrt {\frac{\Omega }{\nu }}\) :

Velocity slip parameter

\(m\) :

Hall current parameter

\(n\) :

Fitted rate constant

\(N_{b} = \frac{{\tau D_{{\text{B}}} \left( {C_{w} - C_{\infty } } \right)}}{\nu }\) :

Brownian motion parameter

\(N_{t} = \frac{{\tau D_{{\text{T}}} \left( {T_{w} - T_{\infty } } \right)}}{{\nu T_{\infty } }}\) :

Thermophoretic parameter

\(P = \frac{b}{\Omega }\) :

Stretching rate to angular frequency scaled stretching parameter

\(\Pr = \frac{{\mu c_{p} }}{{k_{\infty } }}\) :

Prandtl number

\(Q_{1}\) :

Heat absorption and generation coefficient

\(Q^{*} = \frac{{Q_{1} }}{{\rho c_{p} \Omega }}\) :

Heat source parameter to the angular velocity

\(Q_{w}\) :

Heat flux

\(Q_{{\text{m}}}\) :

Mass flux

\(q_{{\text{r}}}\) :

Radiative heat flux

\({\text{Re}} = r^{2} \frac{\Omega }{\nu }\) :

Reynold number

\(Rd = \frac{{4\overline{\sigma }T_{\infty }^{3} }}{{3\overline{k} \, k}}\) :

Radiation parameter

\(S\) :

First-order velocity slip coefficient

\(S_{c} = \frac{\nu }{{D_{{{\text{B}}_{\infty } }} }}\) :

Schmidt number

\(T\) :

Temperature

\(T_{w}\) :

The temperature at the surface of the disk

\(T_{\infty }\) :

Ambient temperature

\(\left( {u,v,w} \right)\) :

Velocity components in the direction of \(\left( {r,\theta ,z} \right)\)

\(\beta\) :

Casson parameter

\(\sigma\) :

Electrical conductivity

\(\nu\) :

Kinematic viscosity

\(\rho\) :

Density

\(\lambda_{1}\) :

The relaxation time of heat flux

\(\lambda_{2}\) :

The relaxation time of mass flux

\(\lambda = \frac{\nu }{{K^{*} \Omega }}\) :

Local porosity parameter

\(\delta = \frac{{k_{r}^{2} }}{\Omega }\) :

Chemical reaction parameter

\(\alpha = \frac{{T_{w} - T_{\infty } }}{{T_{\infty } }}\) :

Temperature ratio parameter

\(\tau\) :

The ratio of capacities or heat capacity of nanofluid and solid particles

\(\tau_{w}\) :

Total shear stress

\(\tau_{zr}\) :

Shear stress in the radial direction

\(\tau_{z\theta }\) :

Shear stress in the tangential direction

\(\Omega\) :

Angular velocity

References

  1. Von Kármán, T.: Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  MATH  Google Scholar 

  2. Cochran, W.G.: The flow due to a rotating disc. Math. Proc. Camb. Philos. Soc. Camb. Univ. Press 30(3), 365–375 (1934)

    Article  MATH  Google Scholar 

  3. Benton, E.R.: On the flow due to a rotating disk. J. Fluid Mech. 24(4), 781–800 (1966)

    Article  MATH  Google Scholar 

  4. Hafeez, A.; Khan, M.; Ahmed, J.: Thermal aspects of chemically reactive Oldroyd-B fluid flow over a rotating disk with Cattaneo-Christov heat flux theory. J. Therm. Anal. Calorim. 144, 1–11 (2020)

    Google Scholar 

  5. Shehzad, S.A.; Mabood, F.; Rauf, A.; Tlili, I.: Forced convective Maxwell fluid flow through rotating disk under the thermophoretic particles motion. Int. Commun. Heat and Mass Transf. 116, 104693 (2020)

    Article  Google Scholar 

  6. Hafeez, A.; Khan, M.; Ahmed, J.: Oldroyd-B fluid flow over a rotating disk subject to Soret–Dufour effects and thermophoresis particle deposition. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 235(13), 2408–2415 (2020). https://doi.org/10.1177/0954406220946075

  7. Shuaib, M.; Bilal, M.; Khan, M.A.; Malebary, S.J.: Fractional analysis of viscous fluid flow with heat and mass transfer over a flexible rotating disk. Comput. Model. Eng. Sci. 123(1), 377–400 (2020)

    Google Scholar 

  8. Gholinia, M.; Hosseinzadeh, K.; Mehrzadi, H.; Ganji, D.D.; Ranjbar, A.A.: Investigation of MHD Eyring-Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions. Case Stud. Therm. Eng. 13, 100356 (2019)

    Article  Google Scholar 

  9. Khan, M.I.; Alzahrani, F.; Hobiny, A.; Ali, Z.: Fully developed second order velocity slip Darcy-Forchheimer flow by a variable thicked surface of disk with entropy generation. Int. Commun. Heat Mass Transf. 117, 104778 (2020)

    Article  Google Scholar 

  10. Ramzan, M.; Riasat, S.; Kadry, S.; Long, C.; Nam, Y.; Lu, D.: Numerical simulation of 3D condensation nanofluid film flow with carbon nanotubes on an inclined rotating disk. Appl. Sci. 10(1), 168 (2020)

    Article  Google Scholar 

  11. Gangadhar, K.; Babu, P.R.; Makinde, O.D.: Spectral relaxation method for Powell-Eyring fluid flow past a radially stretching heated disk surface in a porous medium. Defect Diffus. Forum. 387, 575–586 (2018)

    Article  Google Scholar 

  12. Ramzan, M.; Chung, J.D.; Ullah, N.: Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk—a numerical approach. Results Phys. 7, 3557–3566 (2017)

    Article  Google Scholar 

  13. Hayat, T.; Javed, M.; Imtiaz, M.; Alsaedi, A.: Convective flow of Jeffrey nanofluid due to two stretchable rotating disks. J. Mol. Liq. 240, 291–302 (2017)

    Article  Google Scholar 

  14. Ramzan, M.; Riasat, S.; Chung, J.D.; Chu, Y.M.; Sheikholeslami, M.; Kadry, S.; Howari, F.: Upshot of heterogeneous catalysis in a nanofluid flow over a rotating disk with slip effects and entropy optimization analysis. Sci. Rep. 11(1), 1–15 (2021)

    Article  Google Scholar 

  15. Riasat, S.; Ramzan, M.; Sun, Y.L.; Malik, M.Y.; Chinram, R.: Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics. Case Stud. Therm. Eng. 26, 101039 (2021)

    Article  Google Scholar 

  16. Zhou, S.S.; Ramzan, M.; Howari, F.; Kadry, S.; Chu, Y.M.; Malik, M.Y.: 3D Bio-convective nanofluid Bödewadt slip flow comprising gyrotactic microorganisms over a stretched stationary disk with modified Fourier law. Phys. Scr. 96(7), 075702 (2021)

    Article  Google Scholar 

  17. Mehmood, T.; Ramzan, M.; Howari, F.; Kadry, S.; Chu, Y.M.: Application of response surface methodology on the nanofluid flow over a rotating disk with autocatalytic chemical reaction and entropy generation optimization. Sci. Rep. 11(1), 1–18 (2021)

    Article  Google Scholar 

  18. Riasat, S.; Ramzan, M.; Kadry, S.; Chu, Y.M.: Significance of magnetic Reynolds number in a three-dimensional squeezing Darcy-Forchheimer hydromagnetic nanofluid thin-film flow between two rotating disks. Sci. Rep. 10(1), 1–20 (2020)

    Article  Google Scholar 

  19. Ramzan, M.; Riasat, S.; Kadry, S.; Kuntha, P.; Nam, Y.; Howari, F.: Numerical analysis of carbon nanotube-based nanofluid unsteady flow amid two rotating disks with Hall current coatings and homogeneous–heterogeneous reactions. Coatings 10(1), 48 (2020)

    Article  Google Scholar 

  20. Mabood, F.; Berrehal, H.; Yusuf, T.A.; Khan, W.A.: Carbon Nanotubes-water between stretchable rotating disks with convective boundary conditions: Darcy-Forchheimer scheme. Int. J. Ambient Energy (2021). https://doi.org/10.1080/01430750.2021.1874527

    Article  Google Scholar 

  21. Nadeem, S.; Ijaz, M.; Ayub, M.: Darcy-Forchheimer flow under rotating disk and entropy generation with thermal radiation and heat source/sink. J. Therm. Anal. Calorim. 11(4), 1295–1308 (2020)

    Google Scholar 

  22. Mekheimer, K.S.; Ramadan, S.F.: New insight into gyrotactic microorganisms for bio-thermal convection of Prandtl nanofluid over a stretching/shrinking permeable sheet. SN Appl. Sci. 2(3), 1–11 (2020)

    Article  Google Scholar 

  23. Khan, U.; Bilal, S.; Zaib, A.; Makinde, O.D.; Wakif, A.: Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold–blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation. Numer. Methods Partial Differ. Eq. (2020). https://doi.org/10.1002/num.22620

    Article  Google Scholar 

  24. Khan, N.; Riaz, I.; Hashmi, M.S.; Musmar, S.A.; Khan, S.U.; Abdelmalek, Z.; Tlili, I.: Aspects of chemical entropy generation in flow of casson nanofluid between radiative stretching disks. Entropy 22(5), 495 (2020)

    Article  MathSciNet  Google Scholar 

  25. Saeed, A.; Gul, T.: Bioconvection casson nanofluid flow together with Darcy-Forchheimer due to a rotating disk with thermal radiation and arrhenius activation energy. SN Appl. Sci. 3(1), 1–19 (2021)

    Article  Google Scholar 

  26. Prasad, K.V.; Vaidya, H.; Makinde, O.D.; Setty, B.S.: MHD mixed convective flow of Casson nanofluid over a slender rotating disk with source/sink and partial slip effects. Defect Diffus. Forum 392, 92–122 (2019)

    Article  Google Scholar 

  27. Ramzan, M.; Shaheen, N.; Chung, J.D.; Kadry, S.; Chu, Y.M.; Howari, F.: Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder. Sci. Rep. 11(1), 1–19 (2021)

    Article  Google Scholar 

  28. Abo-Elkhair, R.E.; Mekheimer, K.S.; Zaher, A.Z.: Electro-magnetohydrodynamic oscillatory flow of a dielectric fluid through a porous medium with heat transfer: Brinkman model. Bionanoscience 8(2), 596–608 (2018)

    Article  Google Scholar 

  29. Ramzan, M.; Sheikholeslami, M.; Chung, J.D.; Shafee, A.: Melting heat transfer and entropy optimization owing to carbon nanotubes suspended Casson nanoliquid flow past a swirling cylinder—a numerical treatment. AIP Adv. 8(11), 115130 (2018)

    Article  Google Scholar 

  30. Ramzan, M.; Bilal, M.; Chung, J.D.: Numerical simulation of magnetohydrodynamic radiative flow of Casson nanofluid with chemical reaction past a porous media. J. Comput. Theor. Nanosci. 14(12), 5788–5796 (2017)

    Article  Google Scholar 

  31. Pathak, G.; Joshi, N.: Hall effect in steady MHD radiated flow over a rotating disk embedded in porous medium. J. Xi’an Univ. Archit. Technol. XII, 6037–6045 (2020)

    Google Scholar 

  32. Khan, M.; Ali, W.; Ahmed, J.: A hybrid approach to study the influence of Hall current in radiative nanofluid flow over a rotating disk. Appl. Nanosci. 10, 5167–5177 (2020)

    Article  Google Scholar 

  33. Wakeel Ahmad, M.; McCash, L.B.; Shah, Z.; Nawaz, R.: Cattaneo-Christov heat flux model for second grade nanofluid flow with hall effect through entropy generation over stretchable rotating disk. Coatings 10(7), 610 (2020)

    Article  Google Scholar 

  34. Acharya, N.; Bag, R.; Kundu, P.K.: Influence of Hall current on radiative nanofluid flow over a spinning disk: a hybrid approach. Phys. E. 111, 103–112 (2019)

    Article  Google Scholar 

  35. Rafiq, T.; Mustafa, M.; Farooq, M.A.: Modeling heat transfer in fluid flow near a decelerating rotating disk with variable fluid properties. Int. Commun. Heat Mass Transf. 116, 104673 (2020)

    Article  Google Scholar 

  36. Khan, M.; Salahuddin, T.; Stephen, S.O.: Thermo-physical characteristics of liquids and gases near a rotating disk. Chaos Solitons Fractals 141, 110304 (2020)

    Article  MathSciNet  Google Scholar 

  37. Ahmed, J.; Khan, M.; Ahmad, L.: Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J. Mol. Liq. 287, 110853 (2019)

    Article  Google Scholar 

  38. Hayat, T.; Javed, M.; Imtiaz, M.; Alsaedi, A.: Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity. Results Phys. 8, 341–351 (2018)

    Article  Google Scholar 

  39. Abbas, W.; Mekheimer, K.S.; Ghazy, M.M.; Moawad, A.M.A.: Thermal radiation effects on oscillatory squeeze flow with a particle-fluid suspension. Heat Transf. 50(3), 2129–2149 (2021)

    Article  Google Scholar 

  40. Ramzan, M.; Abid, N.; Lu, D.; Tlili, I.: Impact of melting heat transfer in the time-dependent squeezing nanofluid flow containing carbon nanotubes in a Darcy-Forchheimer porous media with Cattaneo-Christov heat flux. Commun. Theor. Phys. 72(8), 085801 (2020)

    Article  MathSciNet  Google Scholar 

  41. Tulu, A.; Ibrahim, W.: MHD slip flow of CNT-ethylene glycol nanofluid due to a stretchable rotating disk with Cattaneo–Christov heat flux model. Math. Probl. Eng. 2020, 1374658 (2020)

  42. Turkyilmazoglu, M.: Nanofluid flow and heat transfer due to a rotating disk. Comput. Fluids 94, 139–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yin, C.; Zheng, L.; Zhang, C.; Zhang, X.: Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction. Propuls. Power Res. 6(1), 25–30 (2017)

    Article  Google Scholar 

  44. Hafeez, A.; Khan, M.; Ahmed, J.: Flow of Oldroyd-B fluid over a rotating disk with Cattaneo-Christov theory for heat and mass fluxes. Comput. Methods Programs Biomed. 191, 105374 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia, for funding this work through research groups program under Grant Number R.G.P-1/192/42.

Author information

Authors and Affiliations

Authors

Contributions

MR did conceptualization, NS worked on methodology and wrote the original draft, and MKA did validation and helped in the revised draft.

Corresponding author

Correspondence to Muhammad Ramzan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest regarding this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, N., Ramzan, M. & Alaoui, M.K. Impact of Hall Current on a 3D Casson Nanofluid Flow Past a Rotating Deformable Disk with Variable Characteristics. Arab J Sci Eng 46, 12653–12666 (2021). https://doi.org/10.1007/s13369-021-06060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06060-1

Keywords

Navigation