Skip to main content
Log in

Intelligent Fault Diagnosis of Reciprocating Compressor Based on Attention Mechanism Assisted Convolutional Neural Network Via Vibration Signal Rearrangement

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Reciprocating compressor is extensively used in petrochemical industry and other fields. However, due to the nonlinearity of the system, it is usually difficult for traditional methods to extract reliable fault features from its vibration signal and achieve satisfactory diagnostic accuracy under the condition of high intensity noise. In this paper, a novel fault recognition method for reciprocating compressor is proposed on the basis of signal rearrangement and attention mechanism assisted convolutional neural network. Firstly, to enhance the features of the raw signal without information loss and avoid artificial feature extraction, a novel signal rearrangement method, that can convert the raw data into 2-D format, is developed. The proposed signal rearrangement method can bring the data points into a straight line (45 degrees counterclockwise from the horizontal), which can reinforce the characteristics of the raw data and make it more intuitive. Besides, to enable the network to make adequate use of the characteristics of different channels and take global feature into consideration, the attention mechanism is introduced into the convolutional neural network classifier through the SE module of the SENet. The effectiveness of the proposed method is verified by experiments, and the experimental results show that, the diagnostic accuracy of the proposed method reaches 99.4%. In addition, even under strong noise, the method of this work can still maintain an accuracy of 90.2%. Compared with other typical methods, the method suggested in this work not only holds a higher recognition accuracy, but also a stronger ability of anti-noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhao, H.Y.; Wang, J.D.; Lee, J.: A compound interpolation envelope local mean decomposition and its application for fault diagnosis of reciprocating compressors. Mech. Syst. Signal Process. 110, 273–295 (2018)

    Article  Google Scholar 

  2. Potocnik, P.: Semi-supervised vibration-based classification and condition monitoring of compressors. Mech. Syst. Signal Process. 93, 51–65 (2017)

    Article  Google Scholar 

  3. Zhang, Y.; Ji, J.C.; Ma, B.: Fault diagnosis of reciprocating compressor using a novel ensemble empirical mode decomposition-convolutional deep belief network. Measurement 156, 107619 (2020)

    Article  Google Scholar 

  4. Duan, L.X.; Wang, X.D.; Xie, M.Y.; Yuan, Z.: Auxiliary-model-based domain adaptation for reciprocating compressor diagnosis under variable conditions. J. Intell. Fuzzy Syst. 34(6), 3595–3604 (2018)

    Article  Google Scholar 

  5. Sim, H.Y.; Ramli, R.; Saifizul, A.; Song, M.F.: Detection and estimation of valve leakage losses in reciprocating compressor using acoustic emission technique. Measurement 152, 107315 (2020)

    Article  Google Scholar 

  6. Xiao, S.G.; Liu, S.L.; Wang, H.Z.; Lin, Y.; Song, M.M.; Zhang, H.L.: Nonlinear dynamics of coupling rub-impact of double translational joints with subsidence considering the flexibility of piston rod. Nonlinear Dyn. 100(2), 1203–1229 (2020)

    Article  Google Scholar 

  7. Mayadevi, N.; Mini, V.P.; Kumar, R.H.; Prins, S.: Fuzzy-based intelligent algorithm for diagnosis of drive faults in induction motor drive system. Arab J. Sci. Eng. 45(3), 1385–1395 (2020)

    Article  Google Scholar 

  8. Yao, Y.; Xie, B.; Lei, L.; Li, Y.S.; Yin, Q.: Signal enhancement method for mechanical fault diagnosis in flexible drive-train. IEEE Trans. Ind. Electron. 68(3), 2554–2563 (2021)

    Article  Google Scholar 

  9. Zhang, H.L.; Ren, Z.Y.; Xin, S.J.; Liu, S.L.; Lan, C.; Sun, X.: A scale-adaptive positive selection algorithm based on B-cell immune mechanisms for anomaly detection. Eng. Appl. AI. 94, 103805 (2020)

    Article  Google Scholar 

  10. Feng, K.; Smith, W.A.; Borghesani, P.; Randall, R.B.; Peng, Z.X.: Use of cyclostationary properties of vibration signals to identify gear wear mechanisms and track wear evolution. Mech. Syst. Signal Process. 150, 107258 (2021)

    Article  Google Scholar 

  11. Xiao, S.G.; Liu, S.L.; Jiang, F.; Song, M.M.; Cheng, S.G.: Nonlinear dynamic response of reciprocating compressor system with rub-impact fault caused by subsidence. J. Vib. Control. 25(11), 1737–1751 (2019)

    Article  MathSciNet  Google Scholar 

  12. Meng, Z.; Shi, G.X.; Wang, F.L.: Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness. Mech. Mach. Theory 148, 103786 (2020)

    Article  Google Scholar 

  13. Xiao, S.G.; Liu, S.L.; Song, M.M., et al.: Coupling rub-impact dynamics of double translational joints with subsidence for time-varying load in a planar mechanical system. Multibody Syst. Dyn. 48, 451–486 (2020)

    Article  MathSciNet  Google Scholar 

  14. Wei, Y.; Liu, S.L.: Numerical analysis of the dynamic behavior of a rotor-bearing-brush seal system with bristle interference. J. Mech. Sci. Tech. 33(8), 3895–3903 (2019)

    Article  Google Scholar 

  15. Pan, B.; Shi, Z.; Xu, X.: R-VCANet: a new deep-learning-based hyperspectral image classification method. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 10(5): 1975–1986 (2017)

  16. Brunetti, A.; Buongiorno, D.; Trotta, G.F.; Bevilacqua, V.: Computer vision and deep learning techniques for pedestrian detection and tracking: a survey. Neurocomputing 300, 17–33 (2018)

    Article  Google Scholar 

  17. Nguyen, V.N.; Jenssen, R.; Roverso, D.: Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning. Int. J. Elect. Power Energy Syst. 99, 107–120 (2018)

    Article  Google Scholar 

  18. Zhao, D.F.; Liu, S.L.; Cheng, S.G.: Parallel multi-scale entropy and it’s application in rolling bearing fault diagnosis. Measurement 168, 108333 (2021)

    Article  Google Scholar 

  19. Raj, E.F.I.; Balaji, M.: Analysis and classification of faults in switched reluctance motors using deep learning neural networks. Arab J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-05051-y

    Article  Google Scholar 

  20. Pan, Z.Z.; Meng, Z.; Chen, Z.J., et al.: A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings. Mech. Syst. Signal Process 144, 106899 (2020)

    Article  Google Scholar 

  21. Wen, L.; Li, X.Y.; Gao, L.; Zhang, Y.Y.: A new convolutional neural network based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 65(7), 5990–5998 (2017)

    Article  Google Scholar 

  22. Ma, Y.F.; Jia, X.S.; Bai, H.J.; Liu, G.Z.: A new fault diagnosis method based on convolutional neural network and compressive sensing. J. Mech. Sci. Tech. 33(11), 5177–5188 (2019)

    Article  Google Scholar 

  23. Pan, T.Y.; Chen, J.L.; Qu, C.; Zhou, Z.T.: A method for mechanical fault recognition with unseen classes via unsupervised convolutional adversarial auto-encoder. Meas. Sci. Technol. 32(3), 035113 (2021)

    Article  Google Scholar 

  24. Wu, Z.C.; Jiang, P.C.; Ding, C.; Feng, F.Z.; Chen, T.: Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network. Comput. Ind. 108, 53–61 (2019)

    Article  Google Scholar 

  25. Zhao, D.F.; Liu, S.L.; Gu, D.; Sun, X.; Wang, L.: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder. Meas. Sci. Technol. 31, 035004 (2020)

    Article  Google Scholar 

  26. Lecun, Y.; Bengio, Y.; Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  27. Lee, C.K.; Shin, Y.J.: Detection and assessment of I&C cable faults using time-frequency R-CNN-based reflectometry. IEEE Trans. Ind. Electron. 68(2), 1581–1590 (2021)

    Article  Google Scholar 

  28. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E.: Squeeze-and-excitation networks. arXiv: 1**7***09.01507 (2017)

  29. Li, X.; Zhang, W.; Ding, Q.: Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism. Signal Process. 161, 136–154 (2019)

    Article  Google Scholar 

  30. Xu, K.; Ba, J.L.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd International Conference on Machine Learning, vol 37, pp. 2048–2057 (2015)

  31. Zhou, Y.R.; Li, J.; Chen, H.; Wu, Y.; Wu, J.J.; Chen, L.: A spatiotemporal attention mechanism-based model for multi-step citywide passenger demand prediction. Inform. Sci. 513, 372–385 (2020)

    Article  Google Scholar 

  32. Li, Y.; Zeng, J.B.; Shan, S.G.: Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE Trans. Image Process. 28(5), 2439–2450 (2019)

    Article  MathSciNet  Google Scholar 

  33. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM. 60(6), 84–90 (2017)

    Article  Google Scholar 

  34. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E.: Hierarchical attention networks for document classification. Proceedings of NAACL-HLT 2016, 1480–1489 (2016)

    Google Scholar 

  35. Chan, W.; Jaitly, N.; Le, Q.V.; Vinyals, O.: Listen, attend and spell. arXiv: 1**5**0**8.0121 (2015)

  36. Kingma, D.; Ba, J.: Adam: a method for stochastic optimization. arXiv: 1***412**.6980 (2014)

  37. Maaten, L.; Hinton, G.E.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant (52075310), Grant (11802168), and Grant (61603238).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulin Liu or Hongli Zhang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interests with respect to the research, authorship and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Liu, S., Zhang, H. et al. Intelligent Fault Diagnosis of Reciprocating Compressor Based on Attention Mechanism Assisted Convolutional Neural Network Via Vibration Signal Rearrangement. Arab J Sci Eng 46, 7827–7840 (2021). https://doi.org/10.1007/s13369-021-05515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05515-9

Keywords

Navigation