Skip to main content

Advertisement

Log in

Antibacterial, Mechanical and Thermal Properties of PVA/Starch Composite Film Reinforced with Cellulose Nanofiber of Sugarcane Bagasse

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

PVA/starch nanocomposite film reinforced with cellulose nanofiber (CNF) of sugarcane bagasse was developed in this study as other option of existing biodegradable plastics packaging. Polyvinyl alcohol (PVA) is selected in this study as it is the only synthetic polymer that is able to degrade and exhibit excellent film forming properties. This nanocomposite film was prepared via solution casting method. Cellulose nanofiber (CNF) was extracted from sugarcane bagasse (SCB) via alkaline and mild acid treatment assisted with ultrasonication. The cellulose nanofiber suspension was added into PVA/starch film with different loadings from 1 to 6wt% to determine the optimum loading that would give the best result of mechanical, thermal and antibacterial properties. The thermal properties, tensile strength and elongation at break of PVA/starch/cellulose nanofiber showed improvement when the CNF of SCB loading was 4wt%. Reinforcement of cellulose nanofiber to PVA/starch film caused a great enhancement of the tensile strength (85 MPa) which was 254% improvement. Antibacterial properties of this composite film PVA/starch/CNF incorporated with lemongrass essential oil gave inhibition towards gram positive bacteria S. aureus. This study can be an initial step towards development of active food packaging with improved properties of biodegradable film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tan, B.K.; Ching, Y.C.; Poh, S.C.; Abdullah, L.C.; Gan, S.N.: A review of natural fiber reinforced poly(vinyl alcohol) based composites: application and opportunity. Polymers (Basel) 7, 2205–2222 (2015). https://doi.org/10.3390/polym7111509

    Article  Google Scholar 

  2. Ibrahim, M.M.; El-Zawawy, W.K.; Nassar, M.A.: Synthesis and characterization of polyvinyl alcohol/nanospherical cellulose particle films. Carbohydr. Polym. 79, 694–699 (2010). https://doi.org/10.1016/j.carbpol.2009.09.030

    Article  Google Scholar 

  3. Tang, X.; Alavi, S.: Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 85, 7–16 (2011). https://doi.org/10.1016/j.carbpol.2011.01.030

    Article  Google Scholar 

  4. Eichhorn, S.J.: Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7, 303–315 (2011). https://doi.org/10.1039/c0sm00142b

    Article  Google Scholar 

  5. Sun, J.X.; Sun, X.F.; Zhao, H.; Sun, R.C.: Isolation and characterization of cellulose from sugarcane bagasse. Polym. Degrad. Stab. 84, 331–339 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.02.008

    Article  Google Scholar 

  6. Asem, M.; Nawawi, W.M.F.W.; Jimat, D.N.: Evaluation of water absorption of polyvinyl alcohol-starch biocomposite reinforced with sugarcane bagasse nanofibre: Optimization using Two-Level Factorial Design. In: IOP Conference Series: Materials Science and Engineering (2018). https://doi.org/10.1088/1757-899X/368/1/012005.

  7. de Azeredo, H.M.C.; Capparelli Mattoso, L.H.; Habig, T.: Nanocomposites in food packaging—a review. In: Reddy, B. (Ed.) Advances in Diverse Industrial Applications of Nanocomposites, pp. 57–78. InTechOpen, Rijeka (2012). https://doi.org/10.5772/14437

    Chapter  Google Scholar 

  8. Souza, A.C.; Goto, G.E.O.; Mainardi, J.A.; Coelho, A.C.V.; Tadini, C.C.: Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Sci. Technol. 54, 346–352 (2013). https://doi.org/10.1016/j.lwt.2013.06.017

    Article  Google Scholar 

  9. Lalitha, M.K.: Manual on Antimicrobial Susceptibility Testing (2004)

  10. Lee, S.Y.; Mohan, D.J.; Kang, I.A.; Doh, G.H.; Lee, S.; Han, S.O.: Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym. 10, 77–82 (2009). https://doi.org/10.1007/s12221-009-0077-x

    Article  Google Scholar 

  11. Kakrodi, A.R.; Cheng, S.; Mohini, S.; Asiri, A.: Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind. J. Nanomater. 2014, 1–7 (2014)

    Article  Google Scholar 

  12. Qua, E.H.; Hornsby, P.R.; Sharma, H.S.S.; Lyons, G.; Mccall, R.D.: Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibers. J. Appl. Polym. Sci. 113, 2238–2247 (2009). https://doi.org/10.1002/app

    Article  Google Scholar 

  13. Mandal, A.; Chakrabarty, D.: Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J. Ind. Eng. Chem. 20, 462–473 (2014). https://doi.org/10.1016/j.jiec.2013.05.003

    Article  Google Scholar 

  14. Kim, D.Y.; Nishiyama, Y.; Wada, M.; Kuga, S.: High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8, 29–33 (2001). https://doi.org/10.1023/A:1016621103245

    Article  Google Scholar 

  15. Mondal, S.: Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 163, 301–316 (2017). https://doi.org/10.1016/j.carbpol.2016.12.050

    Article  Google Scholar 

  16. Das, K.; Ray, D.; Bandyopadhyay, N.R.; Sahoo, S.; Mohanty, A.K.; Misra, M.: Physico-mechanical properties of the jute micro/nanofibril reinforced starch/polyvinyl alcohol biocomposite films. Compos. Part B Eng. 42, 376–381 (2011). https://doi.org/10.1016/j.compositesb.2010.12.017

    Article  Google Scholar 

  17. Cheng, S.; Panthapulakkal, S.; Sain, M.; Asiri, A.: Aloe vera rind cellulose nanofibers-reinforced films. J. Appl. Polym. Sci. 131, 1–9 (2014). https://doi.org/10.1002/app.40592

    Article  Google Scholar 

  18. Rhim, J.W.; Park, H.-M.; Ha, C.-S.: Bionanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013). https://doi.org/10.1016/B978-0-12-811942-6.00018-2

    Article  Google Scholar 

  19. Jonoobi, M.; Harun, J.; Mathew, A.P.; Oksman, K.: Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 70, 1742–1747 (2010). https://doi.org/10.1016/j.compscitech.2010.07.005

    Article  Google Scholar 

  20. Mathew, A.P.; Oksman, K.; Sain, M.: Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J. Appl. Polym. Sci. 97, 2014–2025 (2005). https://doi.org/10.1002/app.21779

    Article  Google Scholar 

  21. Zou, G.X.; Jin, P.Q.; Xin, L.Z.: Extruded starch/PVA composites: Water resistance, thermal properties, and morphology. J. Elastom. Plast. 40, 303–316 (2008). https://doi.org/10.1177/0095244307085787

    Article  Google Scholar 

  22. Naik, M.I.; Fomda, B.A.; Jaykumar, E.; Bhat, J.A.: Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacterias. Asian Pac. J. Trop. Med. 3, 535–538 (2010). https://doi.org/10.1016/S1995-7645(10)60129-0

    Article  Google Scholar 

  23. Plant, J.; Stephens, B.: Evaluation of the antibacterial activity of a sizable set of essential oils. Med. Aromat. Plants. 4, 2–6 (2014). https://doi.org/10.4172/2167-0412.1000185

    Article  Google Scholar 

  24. Saddiq, A.A.; Khayyat, S.A.: Chemical and antimicrobial studies of monoterpene: citral. Pestic. Biochem. Physiol. 98, 89–93 (2010). https://doi.org/10.1016/j.pestbp.2010.05.004

    Article  Google Scholar 

  25. Carrión-Granda, X.; Fernández-Pan, I.; Maté, J.I.: Antimicrobial edible films and coatings. Edible Film. Coat. Fundam. Appl. (2016). https://doi.org/10.1201/9781315373713

    Article  Google Scholar 

  26. Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G.: Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 49, 2474–2478 (2005). https://doi.org/10.1128/AAC.49.6.2474-2478.2005

    Article  Google Scholar 

  27. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V.: Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 6, 1451–1474 (2013). https://doi.org/10.3390/ph6121451

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to the Ministry of Higher Education (MOHE) and International Islamic University Malaysia (IIUM) for the research Grant FRGS 16-044-0543.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dzun Noraini Jimat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.A.S.S., Jimat, D.N., Nawawi, W.M.F.W. et al. Antibacterial, Mechanical and Thermal Properties of PVA/Starch Composite Film Reinforced with Cellulose Nanofiber of Sugarcane Bagasse. Arab J Sci Eng 47, 5747–5754 (2022). https://doi.org/10.1007/s13369-021-05336-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05336-w

Keywords

Navigation