Skip to main content
Log in

Personalized Advanced Time Blood Glucose Level Prediction

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The introduction of continuous glucose monitoring (CGM) devices for glucose level measurement accelerated the application of artificial intelligence methods in predicting advanced time blood glucose levels by providing lots of continuous structured data needed to train the methods. Advanced time blood glucose level prediction enables diabetic patients to better manage their blood glucose levels and receive early warnings about the wrong treatments and adverse conditions such as hypoglycemia or hyperglycemia. In this study, an artificial neural network is trained for 30- and 60-min prediction horizon by using physiological models for insulin injection, carbohydrate intake, and physical activity in addition to past CGM data for each of six real T1D patients. The mean of the prediction error for six patients is obtained as 18.81 mg/dL and 30.89 mg/dL for 30- and 60-min prediction horizons, respectively. These results are better than the other studies in the literature that use real patient data, and the model is computationally simpler compared to the deep learning-based methods. Therefore, in this study, a model that can be implemented on the mobile or embedded device, learn the patient’s physiologic dynamics, and make accurate predictions during the measurements is developed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saeedi, P.; et al.: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157, 107843 (2019). https://doi.org/10.1016/j.diabres.2019.107843

    Article  Google Scholar 

  2. Contreras, I.; Vehi, J.: Artificial intelligence for diabetes management and decision support: literature review. J. Med. Internet Res. 20(5), 1–21 (2018). https://doi.org/10.2196/10775

    Article  Google Scholar 

  3. Abualigah, L.M.Q.: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering, vol. 816. Springer, Cham (2019)

    Book  Google Scholar 

  4. Abualigah, L.: Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. Neural Comput. Appl. 32(16), 12381–12401 (2020). https://doi.org/10.1007/s00521-020-04839-1

    Article  Google Scholar 

  5. Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S.: Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 48(11), 4047–4071 (2018). https://doi.org/10.1007/s10489-018-1190-6

    Article  Google Scholar 

  6. Abualigah, L.; Diabat, A.: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Comput. (2020). https://doi.org/10.1007/s10586-020-03075-5

    Article  Google Scholar 

  7. Abualigah, L.: Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05107-y

    Article  Google Scholar 

  8. Zanderigo, F.; Sparacino, G.; Kovatchev, B.; Cobelli, C.: Glucose prediction algorithms from continuous monitoring data: assessment of accuracy via continuous glucose error-grid analysis. J. Diabetes Sci. Technol. 1(5), 645–651 (2007). https://doi.org/10.1177/193229680700100508

    Article  Google Scholar 

  9. Reifman, J.; Rajaraman, S.; Gribok, A.; Ward, W.K.: Predictive monitoring for improved management of glucose levels. J. Diabetes Sci. Technol. 1(4), 478–486 (2007). https://doi.org/10.1177/193229680700100405

    Article  Google Scholar 

  10. Eren-oruklu, M.; Cinar, A.; Ph, D.; Quinn, L.; Ph, D.; Smith, D.: Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol. Ther. 11(4), 243–253 (2009)

    Article  Google Scholar 

  11. Zhang, Y.; Kang, R.; Xiang, S.: Research on glucose concentration predicting based on ARMA model. In: Proc. 2014 Progn. Syst. Heal. Manag. Conf. PHM 2014, pp. 332–335 (2014). https://doi.org/10.1109/phm.2014.6988189.

  12. Contreras, I.; Oviedo, S.; Vettoretti, M.; Visentin, R.; Vehí, J.: Personalized blood glucose prediction: a hybrid approach using grammatical evolution and physiological models. PLoS ONE 12(11), 1–16 (2017). https://doi.org/10.1371/journal.pone.0187754

    Article  Google Scholar 

  13. Contreras, I.; Bertachi, A.; Biagi, L.; Oviedo, S.; Vehí, J.: Using grammatical evolution to generate short-term blood glucose prediction models. CEUR Workshop Proc. 2148, 91–96 (2018)

    Google Scholar 

  14. Reymann, M.P.; Dorschky, E.; Groh, B.H.; Martindale, C.; Blank, P.; Eskofier, B.M.: Blood glucose level prediction based on support vector regression using mobile platforms. In: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2016-Octob, pp. 2990–2993 (2016). https://doi.org/10.1109/embc.2016.7591358.

  15. Georga, E.I.; et al.: Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J. Biomed. Heal. Inf. 17(1), 71–81 (2013). https://doi.org/10.1109/TITB.2012.2219876

    Article  Google Scholar 

  16. Georga, E.I.; Protopappas, V.C.; Polyzos, D.; Fotiadis, D.I.: A predictive model of subcutaneous glucose concentration in type 1 diabetes based on Random Forests. In: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 2889–2892 (2012). https://doi.org/10.1109/embc.2012.6346567

  17. Midroni, C.; Leimbigler, P.J.; Baruah, G.; Kolla, M.; Whitehead, A.J.; Fossat, Y.: Predicting glycemia in type 1 diabetes patients: experiments with XGBoost. CEUR Workshop Proc. 2148, 79–84 (2018)

    Google Scholar 

  18. Wang, Y.; Wu, X.; Mo, X.: A novel adaptive-weighted-average framework for blood glucose prediction. Diabetes Technol. Ther. 15(10), 792–801 (2013). https://doi.org/10.1089/dia.2013.0104

    Article  Google Scholar 

  19. Allam, F.; Nossai, Z.; Gomma, H.; Ibrahim, I.; Abdelsalam, M.: A recurrent neural network approach for predicting glucose concentration in type-1 diabetic patients. IFIP Adv. Inf. Commun. Technol. 363(1), 254–259 (2011). https://doi.org/10.1007/978-3-642-23957-1_29

    Article  Google Scholar 

  20. Martinsson, J.; Schliep, A.; Eliasson, B.; Meijner, C.; Persson, S.; Mogren, O.: Automatic blood glucose prediction with confidence using recurrent neural networks. CEUR Workshop Proc. 2148, 64–68 (2018)

    Google Scholar 

  21. Meijner, C.; Persson, S.: Blood Glucose Prediction for Type 1 Diabetes using Machine Learning, pp. 1–77 (2017)

  22. Mirshekarian, S.: Blood Glucose Level Prediction via Seamless Incorporation of Raw Features Using RNNs (2018)

  23. Aiello, E.M.; Lisanti, G.; Magni, L.; Musci, M.; Toffanin, C.: Therapy-driven deep glucose forecasting. Eng. Appl. Artif. Intell. 87, 103255 (2019). https://doi.org/10.1016/j.engappai.2019.103255

    Article  Google Scholar 

  24. Sun, Q.; Jankovic, M.V.; Bally, L.; Mougiakakou, S.G.: Predicting blood glucose with an LSTM and Bi-LSTM based deep neural network. In: 2018 14th Symp. Neural Networks Appl. NEUREL 2018 (2018). https://doi.org/10.1109/neurel.2018.8586990

  25. Li, K.; Liu, C.; Zhu, T.; Herrero, P.; Georgiou, P.: GluNet: a deep learning framework for accurate glucose forecasting. IEEE J. Biomed. Heal. Inf. 24(2), 414–423 (2020)

    Article  Google Scholar 

  26. Mhaskar, H.N.; Pereverzyev, S.V.; van der Walt, M.D.: A deep learning approach to diabetic blood glucose prediction. Front. Appl. Math. Stat. 3(July), 1–11 (2017). https://doi.org/10.3389/fams.2017.00014

    Article  Google Scholar 

  27. Bertachi, A.; Biagi, L.; Contreras, I.; Luo, N.; Vehí, J.: Prediction of blood glucose levels and nocturnal hypoglycemia using physiological models and artificial neural networks. CEUR Workshop Proc. 2148, 85–90 (2018)

    Google Scholar 

  28. Daskalaki, E.; Prountzou, A.; Diem, P.; Mougiakakou, S.G.: Real-Time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol. Ther. 14(2), 168–174 (2012). https://doi.org/10.1089/dia.2011.0093

    Article  Google Scholar 

  29. Pappada, S.M.; et al.: Development of a neural network model for predicting glucose levels in a surgical critical care setting. Patient Saf. Surg. 4(1), 15 (2010). https://doi.org/10.1186/1754-9493-4-15

    Article  Google Scholar 

  30. Pappada, S.M.; et al.: Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol. Ther. 13(2), 135–141 (2011). https://doi.org/10.1089/dia.2010.0104

    Article  Google Scholar 

  31. Zecchin, C.; Facchinetti, A.; Sparacino, G.; De Nicolao, G.; Cobelli, C.: Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans. Biomed. Eng. 59(6), 1550–1560 (2012). https://doi.org/10.1109/TBME.2012.2188893

    Article  Google Scholar 

  32. Marling, C.; Bunescu, R.: The OhioT1DM dataset for blood glucose level prediction. CEUR Workshop Proc. 2148, 60–63 (2018)

    Google Scholar 

  33. Lee, H.; Buckingham, B.A.; Wilson, D.M.; Bequette, B.W.: A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator. J. Diabetes Sci. Technol. 3(5), 1082–1090 (2009). https://doi.org/10.1177/193229680900300511

    Article  Google Scholar 

  34. Hovorka, R.; et al.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25(4), 905–920 (2004). https://doi.org/10.1088/0967-3334/25/4/010

    Article  Google Scholar 

Download references

Funding

This study is supported by Cukurova University Scientific Research Projects Unit with Grant Number FYL-2019-12385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Aydın.

Ethics declarations

Conflict of interest

Asiye Sahin and Ahmet Aydın declare that they have no competing financial interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, A., Aydın, A. Personalized Advanced Time Blood Glucose Level Prediction. Arab J Sci Eng 46, 9333–9344 (2021). https://doi.org/10.1007/s13369-020-05263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05263-2

Keywords

Navigation