Skip to main content
Log in

Thermodynamic Analysis and Multi-Objective Optimization of Solar Heat Engines

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Detailed performance analysis for a thermal system using a generalized irreversible solar-driven heat engine model is performed. The heat engine (HE) model is formed by the first and the second laws of thermodynamics and economical considerations. Also, the HE is optimized under the thermo-economic objective function (TEOF), power output, and overall efficiency criteria. The TEOF is used to evaluate the investment, including lost exergy, and operating and maintenance costs together. It is defined as the power output per unit total cost. In the HE model, investment and operating and maintenance costs are regarded as proportional to the power output of the heat engine, while lost exergy cost is regarded as proportional to the entropy generation rate. In thermal system designs, various scenarios are considered regarding size and configuration limits. To fulfill the requirements, performance output parameters can be evaluated with weighing factors. In the HE model, the hot surface heat transfer mechanisms are considered as both radiation and convection, but the cold surface heat transfer mechanism is considered as convection, only. Also, the thermo-economic performance is evaluated considering heat losses. Besides overall efficiency and operational temperatures of the hot working fluid have been discoursed in detail. HE model performance data and optimized results are computed numerically. And finally, an artificial neural network model is presented for an alternative solution to compute HE performance data with less effort and less input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Investment cost parameter (NCU/year W)

A :

Heat transfer area (m2)

ANN:

Artificial neural networks

b :

Operating and maintenance cost parameter (NCU/year W)

c :

Total cost parameter (NCU/year W)

C :

Cost (NCU/year)

d :

Lost exergy cost parameter (NCU/year W)

\( \dot{C}_{\text{I}} \) :

Internal conductance

F :

Objective function

f :

Economical parameter c/(c + d)

HE:

Heat engine

NCU:

National currency unit

R :

Internal irreversibility parameter

SD-HE:

Solar-driven heat engine

SD-ExCR:

Solar-driven external combustion regenerative

T :

Temperature (K)

TEOF:

Thermo-economic objective function

U :

Overall heat transfer coefficient (W/m2 K for convection or W/m2 K4 for radiation)

\( \dot{Q} \) :

Rate of heat transfer (W)

\( \dot{W} \) :

Power output (W)

X :

\( = \frac{{T_{X} }}{{T_{\text{coll}} }} \)

Y :

\( = \frac{{T_{Y} }}{{T_{\text{amb}} }} \)

β :

\( \frac{{U_{\text{HR}} }}{{U_{\text{HC}} }}T_{\text{H}}^{3} \)

μ :

\( \frac{{T_{\text{coll}} }}{{T_{\text{amb}} }} \)

ψ :

\( = \frac{{U_{\text{C,amb}} }}{{U_{\text{C,coll}} }} \)

η :

Overall efficiency

ai:

Annual investment

amb:

Heat sink

aper:

Aperture

C,amb:

Low-temperature side convection

coll:

Heat source

C,coll:

High-temperature side convection

loss:

Leakage

max:

Maximum

mp:

Maximum power

mef:

Maximum efficiency

R:

Ratio

R,amb:

Low-temperature side radiation

R.coll:

High-temperature side radiation

sc:

Solar collector

T,amb:

Total heat rate from the cold reservoir

T,coll:

Total heat rate from the hot reservoir

X :

Warm working fluid

Y :

Cold working fluid

*:

Maximum thermo-economic function

–:

Dimensionless

References

  1. Chambadal, Paul: Les Centrales Nucléaires. Armand Colin, Paris (1957)

    Google Scholar 

  2. Novikov, I.I.: Atommaya Energiya 3 (1957) 409; English translation: J. Nuclear Energy II 7 (1958) 125

  3. Curzon, F.L.; Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975). https://doi.org/10.1119/1.10023

    Article  Google Scholar 

  4. Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79, 1191–1218 (1996). https://doi.org/10.1063/1.362674

    Article  Google Scholar 

  5. Chen, L.; Wu, C.; Sun, F.: Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. (1999). https://doi.org/10.1515/JNETDY.1999.020

    Article  MATH  Google Scholar 

  6. Durmayaz, A.: Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics. Prog. Energy Combust. Sci. 30, 175–217 (2004). https://doi.org/10.1016/j.pecs.2003.10.003

    Article  Google Scholar 

  7. Jeter, S.M.: Maximum conversion efficiency for the utilization of direct solar radiation. Sol. Energy 26, 231–236 (1981). https://doi.org/10.1016/0038-092X(81)90207-3

    Article  Google Scholar 

  8. Gordon, J.M.: On optimized solar-driven heat engines. Sol. Energy 40, 457–461 (1988). https://doi.org/10.1016/0038-092X(88)90100-4

    Article  Google Scholar 

  9. Göktun, S.; Özkaynak, S.; Yavuz, H.: Design parameters of a radiative heat engine. Energy 18, 651–655 (1993). https://doi.org/10.1016/0360-5442(93)90043-D

    Article  Google Scholar 

  10. Özkaynak, S.: Maximum power operation of a solar-powered heat engine. Energy 20, 715–721 (1995). https://doi.org/10.1016/0360-5442(95)00028-F

    Article  Google Scholar 

  11. Badescu, V.; Popescu, G.; Feidt, M.: Model of optimized solar heat engine operating on Mars. Energy Convers. Manag. 40, 1713–1721 (1999). https://doi.org/10.1016/S0196-8904(99)00064-3

    Article  Google Scholar 

  12. Erbay, L.B.; Yavuz, H.: An analysis of an endoreversible heat engine with combined heat transfer. J. Phys. D Appl. Phys. 30, 2841–2847 (1997). https://doi.org/10.1088/0022-3727/30/20/010

    Article  Google Scholar 

  13. Badescu, V.: Optimum design and operation of a dynamic solar power system. Energy Convers. Manag. 37, 151–160 (1996). https://doi.org/10.1016/0196-8904(95)00169-E

    Article  Google Scholar 

  14. Koyun, A.: Performance analysis of a solar-driven heat engine with external irreversibilities under maximum power and power density condition. Energy Convers. Manag. 45, 1941–1947 (2004). https://doi.org/10.1016/S0196-8904(03)00165-1

    Article  Google Scholar 

  15. Sogut, O.S.; Durmayaz, A.: Performance optimization of a solar driven heat engine with finite-rate heat transfer. Renew. Energy 30, 1329–1344 (2005). https://doi.org/10.1016/j.renene.2004.10.004

    Article  Google Scholar 

  16. Chen, J.: Optimization of a solar-driven heat engine. J. Appl. Phys. 72, 3778–3780 (1992). https://doi.org/10.1063/1.352273

    Article  Google Scholar 

  17. Yilmaz, T.; Ust, Y.; Erdil, A.: Optimum operating conditions of irreversible solar driven heat engines. Renew. Energy 31, 1333–1342 (2006). https://doi.org/10.1016/j.renene.2005.06.012

    Article  Google Scholar 

  18. Sahin, B.; Kodal, A.: Finite time thermoeconomic optimization for endoreversible refrigerators and heat pumps. Energy Convers. Manag. 40, 951–960 (1999). https://doi.org/10.1016/S0196-8904(98)00153-8

    Article  Google Scholar 

  19. Kodal, A.; Sahin, B.; Yilmaz, T.: Effects of internal irreversibility and heat leakage on the finite time thermoeconomic performance of refrigerators and heat pumps. Energy Convers. Manag. 41, 607–619 (2000). https://doi.org/10.1016/S0196-8904(99)00129-6

    Article  Google Scholar 

  20. Sahin, B.; Kodal, A.: Performance analysis of an endoreversible heat engine based on a new thermoeconomic optimization criterion. Energy Convers. Manag. 42, 1085–1093 (2001). https://doi.org/10.1016/S0196-8904(00)00120-5

    Article  Google Scholar 

  21. Kodal, A.; Sahin, B.: Finite size thermoeconomic optimization for irreversible heat engines. Int. J. Therm. Sci. 42, 777–782 (2003). https://doi.org/10.1016/S1290-0729(03)00048-6

    Article  Google Scholar 

  22. Sahin, B.; Ust, Y.; Yilmaz, T.; Akcay, I.H.: Thermoeconomic analysis of a solar driven heat engine. Renew. Energy 31, 1033–1042 (2006). https://doi.org/10.1016/j.renene.2005.06.001

    Article  Google Scholar 

  23. Ust, Y.: Effects of combined heat transfer on the thermo-economic performance of irreversible solar-driven heat engines. Renew. Energy 32, 2085–2095 (2007). https://doi.org/10.1016/j.renene.2006.11.007

    Article  Google Scholar 

  24. Ust, Y.; Arslan, F.; Ozsari, I.; Cakir, M.: Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria. Energy 90, 552–559 (2015). https://doi.org/10.1016/j.energy.2015.07.081

    Article  Google Scholar 

  25. Zhang, Y.; Lin, B.; Chen, J.: Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency. Renew. Energy 32, 856–867 (2007). https://doi.org/10.1016/j.renene.2006.02.008

    Article  Google Scholar 

  26. Wu, L.; Lin, G.; Chen, J.: Parametric optimization of a solar-driven Braysson heat engine with variable heat capacity of the working fluid and radiation–convection heat losses. Renew. Energy 35, 95–100 (2010). https://doi.org/10.1016/j.renene.2009.07.015

    Article  Google Scholar 

  27. McGovern, R.K.; Smith, W.J.: Optimal concentration and temperatures of solar thermal power plants. Energy Convers. Manag. 60, 226–232 (2012). https://doi.org/10.1016/j.enconman.2011.11.032

    Article  Google Scholar 

  28. Ahmadi, M.H.; Dehghani, S.; Mohammadi, A.H.; Feidt, M.; Barranco-Jimenez, M.A.: Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Convers. Manag. 75, 635–642 (2013). https://doi.org/10.1016/j.enconman.2013.07.078

    Article  Google Scholar 

  29. Ahmadi, M.H.; Mehrpooya, M.: Thermo-economic modeling and optimization of an irreversible solar-driven heat engine. Energy Convers. Manag. 103, 616–622 (2015). https://doi.org/10.1016/j.enconman.2015.06.088

    Article  Google Scholar 

  30. Ahmadi, M.H.; Ahmadi, M.A.; Mellit, A.; Pourfayaz, F.; Feidt, M.: Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation. Int. J. Electr. Power Energy Syst. 78, 88–95 (2016). https://doi.org/10.1016/j.ijepes.2015.11.042

    Article  Google Scholar 

  31. Liao, T.; Lin, J.: Optimum performance characteristics of a solar-driven Stirling heat engine system. Energy Convers. Manag. 97, 20–25 (2015). https://doi.org/10.1016/j.enconman.2015.03.027

    Article  Google Scholar 

  32. Li, Y.; Liu, G.; Liu, X.; Liao, S.: Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance. Renew. Energy 95, 465–473 (2016). https://doi.org/10.1016/j.renene.2016.04.052

    Article  Google Scholar 

  33. Miao, C.; Huang, Y.: Multi-objective optimization of molten carbonate fuel cell and absorption refrigerator hybrid system. Energy Procedia 152, 904–909 (2018). https://doi.org/10.1016/j.egypro.2018.09.091

    Article  Google Scholar 

  34. Wang, J.; Lu, Y.; Yang, Y.; Mao, T.: Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system. Energy 115, 49–59 (2016). https://doi.org/10.1016/j.energy.2016.08.102

    Article  Google Scholar 

  35. Nemati, A.; Sadeghi, M.; Yari, M.: Exergoeconomic analysis and multi-objective optimization of a marine engine waste heat driven RO desalination system integrated with an organic Rankine cycle using zeotropic working fluid. Desalination 422, 113–123 (2017). https://doi.org/10.1016/j.desal.2017.08.012

    Article  Google Scholar 

  36. Xia, J.; Wang, J.; Zhou, K.; Zhao, P.; Dai, Y.: Thermodynamic and economic analysis and multi-objective optimization of a novel transcritical CO2 Rankine cycle with an ejector driven by low grade heat source. Energy 161, 337–351 (2018). https://doi.org/10.1016/j.energy.2018.07.161

    Article  Google Scholar 

  37. Ust, Y.; Arslan, F.; Ozsari, I.: A comparative thermo-ecological performance analysis of generalized irreversible solar-driven heat engines. Renew. Energy 113, 1242–1249 (2017). https://doi.org/10.1016/j.renene.2017.06.091

    Article  Google Scholar 

  38. Garg, P.; Orosz, M.S.: Economic optimization of Organic Rankine cycle with pure fluids and mixtures for waste heat and solar applications using particle swarm optimization method. Energy Convers. Manag. 165, 649–668 (2018). https://doi.org/10.1016/j.enconman.2018.03.086

    Article  Google Scholar 

  39. Takalkar, G.D.; Bhosale, R.R.: Mathematical modeling, simulation and optimization of solar thermal powered Encontech engine for desalination. Sol. Energy 172, 104–115 (2018). https://doi.org/10.1016/j.solener.2018.07.081

    Article  Google Scholar 

  40. Ayaz, S.K.; Altuntas, O.; Caliskan, H.: Thermoecologic assessment and life cycle-based environmental pollution cost analysis of microgas turbine. J. Environ. Eng. 146, 04019096 (2020). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001611

    Article  Google Scholar 

  41. Caglayan, H.; Caliskan, H.: Thermo-ecological analysis of industrial kilns. J. Environ. Manag. 241, 149–155 (2019). https://doi.org/10.1016/j.jenvman.2019.04.032

    Article  Google Scholar 

  42. Jamali, D.H.; Noorpoor, A.: Optimization of a novel solar-based multi-generation system for waste heat recovery in a cement plant. J. Clean. Prod. 240, 117825 (2019). https://doi.org/10.1016/j.jclepro.2019.117825

    Article  Google Scholar 

  43. Lai, X.; Yu, M.; Long, R.; Liu, Z.; Liu, W.: Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model. Energy 183, 573–583 (2019). https://doi.org/10.1016/j.energy.2019.06.131

    Article  Google Scholar 

  44. Wang, J.; Chen, Y.; Lior, N.: Exergo-economic analysis method and optimization of a novel photovoltaic/thermal solar-assisted hybrid combined cooling, heating and power system. Energy Convers. Manag. 199, 111945 (2019). https://doi.org/10.1016/j.enconman.2019.111945

    Article  Google Scholar 

  45. Feng, H.; Wang, X.; Zhang, J.: Study on the effects of intake conditions on the exergy destruction of low temperature combustion engine for a toluene reference fuel. Energy Convers. Manag. 188, 241–249 (2019). https://doi.org/10.1016/j.enconman.2019.02.090

    Article  Google Scholar 

  46. Sahin, A.: Finite-time thermodynamic analysis of a solar driven heat engine. Exergy Int. J. 1, 122–126 (2001). https://doi.org/10.1016/S1164-0235(01)00018-8

    Article  Google Scholar 

  47. Li, T.; Peng, Y.; Shi, Y.; Kou, G.: Study on multi-agent based simulation of team machine learning. Procedia Comput. Sci. 91, 847–854 (2016). https://doi.org/10.1016/j.procs.2016.07.094

    Article  Google Scholar 

  48. Li, T.; Kou, G.; Peng, Y.; Shi, Y.: Classifying with adaptive hyper-spheres: an incremental classifier based on competitive learning. IEEE Trans. Syst. Man Cybern. Syst. 50, 1218–1229 (2020). https://doi.org/10.1109/TSMC.2017.2761360

    Article  Google Scholar 

  49. Li, T.; Kou, G.; Peng, Y.: Improving malicious URLs detection via feature engineering: linear and nonlinear space transformation methods. Inf. Syst. 91, 101494 (2020). https://doi.org/10.1016/j.is.2020.101494

    Article  Google Scholar 

  50. Csáji, B.C.: Approximation with artificial neural networks, vol. 24 issue 48, p 7. Faculty of Sciences, Etvs Lornd University, Hungary (2001)

    Google Scholar 

  51. Haykin, S.S.: Neural Networks and Learning Machines. Pearson, New York (2009)

    Google Scholar 

  52. Talaat, M.; Gobran, M.H.; Wasfi, M.: A hybrid model of an artificial neural network with thermodynamic model for system diagnosis of electrical power plant gas turbine. Eng. Appl. Artif. Intell. 68, 222–235 (2018). https://doi.org/10.1016/j.engappai.2017.10.014

    Article  Google Scholar 

  53. Lv, C.; Xing, Y.; Zhang, J.; Na, X.; Li, Y.; Liu, T.; Cao, D.; Wang, F.-Y.: Levenberg–marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system. IEEE Trans. Ind. Inf. 14, 3436–3446 (2018). https://doi.org/10.1109/TII.2017.2777460

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Turkish Academy of Sciences (TUBA-GEBIP) and The Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ozsari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ust, Y., Ozsari, I., Arslan, F. et al. Thermodynamic Analysis and Multi-Objective Optimization of Solar Heat Engines. Arab J Sci Eng 45, 9669–9684 (2020). https://doi.org/10.1007/s13369-020-04880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04880-1

Keywords

Navigation