Skip to main content
Log in

Thermally Reduced Graphene Oxide-Reinforced Acrylonitrile Butadiene Styrene Composites Developed by Combined Solution and Melt Mixing Method

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Graphene is a potential reinforcing material for polymeric materials due to high aspect ratio, surface area and electrical and mechanical properties. In this work, thermally reduced graphene oxide (TRGO)/acrylonitrile butadiene styrene (ABS) composites were developed using combined solution mixing and melt mixing techniques. The effect of wt% of pristine graphite and TRGO on the mechanical and thermal properties of composites was studied. Graphene oxide (GO) was prepared from graphite powder using improved Hummers’ method followed by thermal reduction to obtain TRGO. Characterization of GO, TRGO and as-developed ABS composites was performed using Fourier transmission infrared spectroscopy, scanning electron microscopy, atomic force microscopy, differential scanning calorimetry and thermogravimetric analysis. Tensile properties were determined by testing injection-molded dumbbell-shaped samples. The results showed that tensile properties of TRGO/ABS composites increased significantly at 0.2 wt% loading compared to corresponding graphite/ABS composites. However, increased content of both fillers decreased mechanical properties of the composites. TRGO, at 0.2 wt% loading, increased glass transition temperature of ABS by ca.7 °C. TRGO neither increased nor decreased thermal stability of ABS composites. This study showed that combined solution and melt mixing technique can significantly improve dispersion of TRGO in ABS matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brydson, J.A.: Plastics Materials. Butterworth-Heinemann, Oxford (1999)

    Google Scholar 

  2. Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  Google Scholar 

  3. Kar, K.K.; Rana, S.; Pandey, J.: Handbook of Polymer Nanocomposites Processing, Performance and Application. Springer, New York (2015)

    Book  Google Scholar 

  4. Bouhfid, R.; Arrakhiz, F.; Qaiss, A.: Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide 6/acrylonitrile–butadiene–styrene blends. Polym. Compos. 37(4), 998–1006 (2016)

    Article  Google Scholar 

  5. Jayanth, N.; Senthil, P.: Application of 3D printed ABS based conductive carbon black composite sensor in void fraction measurement. Compos. B Eng. 159, 224–230 (2019)

    Article  Google Scholar 

  6. Mura, A.; Adamo, F.; Wang, H.; Leong, W.S.; Ji, X.; Kong, J.: Investigation about tribological behavior of ABS and PC-ABS polymers coated with graphene. Tribol. Int. 134, 335–340 (2019)

    Article  Google Scholar 

  7. Raza, M.A.; Mujadid, M.; Hussain, M.; Ali, H.Q.; Rehman, Z.U.; Inam, A.: Mechanical properties of graphene oxide coated-glass fiber reinforced unsaturated polyester composites. Mater. Res. Express 6(11), 115303 (2019)

    Article  Google Scholar 

  8. Allen, M.J.; Tung, V.C.; Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)

    Article  Google Scholar 

  9. Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007)

    Article  Google Scholar 

  10. Eda, G.; Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)

    Article  Google Scholar 

  11. Raza, M.A.; Westwood, A.; Brown, A.; Hondow, N.; Stirling, C.: Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49(13), 4269–4279 (2011)

    Article  Google Scholar 

  12. Pour, R.H.; Hassan, A.; Soheilmoghaddam, M.; Bidsorkhi, H.C.: Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polym. Compos. 37(6), 1633–1640 (2016)

    Article  Google Scholar 

  13. Wang, F.; Zhang, Y.; Zhang, B.; Hong, R.; Kumar, M.; Xie, C.: Enhanced electrical conductivity and mechanical properties of ABS/EPDM composites filled with graphene. Compos. B Eng. 83, 66–74 (2015)

    Article  Google Scholar 

  14. Waheed, Q.; Khan, A.N.; Jan, R.: Investigating the reinforcement effect of few layer graphene and multi-walled carbon nanotubes in acrylonitrile-butadiene-styrene. Polymer 97, 496–503 (2016)

    Article  Google Scholar 

  15. Panwar, V.; Pal, K.: An optimal reduction technique for rGO/ABS composites having high-end dynamic properties based on Cole–Cole plot, degree of entanglement and C-factor. Compos. B Eng. 114, 46–57 (2017)

    Article  Google Scholar 

  16. Uhl, F.M.; Yao, Q.; Wilkie, C.A.: Formation of nanocomposites of styrene and its copolymers using graphite as the nanomaterial. Polym. Adv. Technol. 16(7), 533–540 (2005)

    Article  Google Scholar 

  17. Pandey, A.K.; Kumar, R.; Kachhavah, V.S.; Kar, K.K.: Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile–butadiene–styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv. 6(56), 50559–50571 (2016)

    Article  Google Scholar 

  18. Difallah, B.B.; Kharrat, M.; Dammak, M.; Monteil, G.: Mechanical and tribological response of ABS polymer matrix filled with graphite powder. Mater. Des. 34, 782–787 (2012)

    Article  Google Scholar 

  19. Moniruzzaman, M.; Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194–5205 (2006)

    Article  Google Scholar 

  20. Dennis, H.; Hunter, D.; Chang, D.; Kim, S.; White, J.; Cho, J.; Paul, D.R.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23), 9513–9522 (2001)

    Article  Google Scholar 

  21. Ercan, N.; Durmus, A.; Kaşgöz, A.: Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. J. Thermoplast. Compos. Mater. 30(7), 950–970 (2017)

    Article  Google Scholar 

  22. Caradonna, A.; Colucci, G.; Giorcelli, M.; Frache, A.; Badini, C.: Thermal behavior of thermoplastic polymer nanocomposites containing graphene nanoplatelets. J. Appl. Polym. Sci. 134, 20 (2017)

    Article  Google Scholar 

  23. Burk, L.; Gliem, M.; Lais, F.; Nutz, F.; Retsch, M.; Mülhaupt, R.: Mechanochemically carboxylated multilayer graphene for carbon/ABS composites with improved thermal conductivity. Polymers 10(10), 1088 (2018)

    Article  Google Scholar 

  24. Dul, S.; Fambri, L.; Pegoretti, A.: Fused deposition modelling with ABS–graphene nanocomposites. Compos. A Appl. Sci. Manuf. 85, 181–191 (2016)

    Article  Google Scholar 

  25. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  26. Raza, M.A.; Rehman, Z.U.; Ghauri, F.A.; Ahmad, A.; Ahmad, R.; Raffi, M.: Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal. Thin Solid Films 620, 150–159 (2016)

    Article  Google Scholar 

  27. Ghauri, F.A.; Raza, M.A.; Baig, M.S.; Ibrahim, S.: Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings. Mater. Res. Express 4, 125601 (2017)

    Article  Google Scholar 

  28. Shen, J.; Li, T.; Long, Y.; Shi, M.; Li, N.; Ye, M.: One-step solid state preparation of reduced graphene oxide. Carbon 50(6), 2134–2140 (2012)

    Article  Google Scholar 

  29. Nekahi, A.; Marashi, P.; Haghshenas, D.: Transparent conductive thin film of ultra large reduced graphene oxide monolayers. Appl. Surf. Sci. 295, 59–65 (2014)

    Article  Google Scholar 

  30. Maqsood, M.F.; Raza, M.A.; Ghauri, F.A.; et al.: Corrosion study of graphene oxide coatings on AZ31B magnesium alloy. J. Coat. Technol. Res. (2020). https://doi.org/10.1007/s11998-020-00350-3

  31. Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)

    Article  Google Scholar 

  32. Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q.: Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69, 467–480 (2014)

    Article  Google Scholar 

  33. Ghaleb, Z.; Mariatti, M.; Ariff, Z.: Graphene nanoparticle dispersion in epoxy thin film composites for electronic applications: effect on tensile, electrical and thermal properties. J. Mater. Sci. Mater. Electron. 28(1), 808–817 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ali Raza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M.A., Maqsood, M.F., Rehman, Z.U. et al. Thermally Reduced Graphene Oxide-Reinforced Acrylonitrile Butadiene Styrene Composites Developed by Combined Solution and Melt Mixing Method. Arab J Sci Eng 45, 9559–9568 (2020). https://doi.org/10.1007/s13369-020-04845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04845-4

Keywords

Navigation