Skip to main content
Log in

Prediction of Properties of Concrete Cured Under Hot Weather Using Multivariate Regression and ANN Models

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Concreting in hot weather poses special problems, and the properties of concrete are significantly influenced by mix parameters, construction practices and environmental conditions. In this study, mix design parameters, casting temperature and curing conditions were varied to study the mechanical properties and durability characteristics with the ultimate aim of developing models relating the concrete properties and the experimental parameters. The effect of w/c ratio (0.3 to 0.45), in situ concrete temperature (25 to 45 °C) and curing method (ponding, covering with wet burlap or applying curing compound followed by curing under laboratory or field conditions) was assessed by measuring compressive strength (f′c), split tensile strength (ft), pulse velocity (PV) and depth of water penetration (WP) up to 180 days. Prediction models were developed utilizing quadratic regression models and artificial neural networks (ANNs). The regression models indicated that moist curing, in situ concrete temperature and curing period have a positive impact on the strength parameters and PV, while the former two variables had a negative effect on the WP. The w/c ratio had a significant positive impact on the WP. The concrete properties predicted by ANN models were more accurate than those predicted by regression models. A combined ANN model, developed for predicting strength and PV simultaneously, had a better correlation coefficient compared to ANN models developed for each variable separately. The developed models are expected to assist concrete technologists in the selection of appropriate concrete mixture parameters to obtain concrete with desired properties under hot weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Courtesy: climatemps.com)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

OPC:

Ordinary Portland cement

w/c :

Water-to-cement ratio

ANN:

Artificial neural network

ACI:

American Concrete Institute

ASTM:

American Society of Testing Materials

f′c:

Compressive strength of concrete, MPa

ft:

Split tensile strength of concrete, MPa

PV:

Ultrasonic pulse velocity, m/s

WP:

Depth of water penetration, mm

CGB:

Conjugate gradient backpropagation

RMSE:

Root-mean-square error

MAE:

Mean absolute error

T :

In situ concrete temperature, °C

t :

Curing period, days

References

  1. Nasir, M.: Effect of casting temperature and curing regime on mechanical properties and durability of concrete. MS Thesis, Civil and Env. Engg. Deptt., King Fahd University of Petroleum and Minerals, Dhahran (2013)

  2. Alsayed, S.H.; Amjad, M.A.: Effect of curing conditions on strength, porosity, absorptivity and shrinkage of concrete in hot and dry climate. Cem. Concr. Res. 24(7), 1390–1398 (1994)

    Google Scholar 

  3. Jaegerman, C.H.; Raveena, D.; Pundak, B.: Accelerated curing of concrete by solar radiation. In: Proceedings of International Rilem Symposium On Concrete and Reinforced Concrete in Hot Countries, pp. 339–362 (1971)

  4. Shirley, D.E.: Concreting in hot weather. UNESCO Regional Office for Education in Asia and Oceania (1979)

  5. ACI Committee 305.: Guide to Hot Weather Concreting. Farmingt. Hills, Mich. Am. Concr. Institute, p. 23 (2010)

  6. Mouret, M.; Bascoul, A.; Escadeillas, G.: Drops in concrete strength in summer related to the aggregate temperature. Cem. Concr. Res. 27, 345–357 (1997)

    Google Scholar 

  7. Hasanain, G.S.; Khallaf, T.A.; Mahmood, K.: Water evaporation from freshly placed concrete surfaces in hot weather. Cem. Concr. Res. 19(3), 465–475 (1989)

    Google Scholar 

  8. Ortiz, J.; Aguado, A.; Agulló, L.; García, T.: Influence of environmental temperatures on the concrete compressive strength: simulation of hot and cold weather conditions. Cem. Concr. Res. 35, 1970–1979 (2005)

    Google Scholar 

  9. Kayyali, O.A.: Effect of certain mixing and placing practices in hot weather on the strength of concrete. Build. Environ. 19(1), 59–63 (1984)

    Google Scholar 

  10. Alshamsi, M.; Imran, H.D.; Bushlaibi, A.: Drying shrinkage of concrete samples exposed to extreme hot weather. In: Proceedings of the International Conference on Cement Combinations for Durable Concrete, pp. 357–362, (2005)

  11. Al-Negheimish, A.I.; Alhozaimy, A.M.: Impact of extremely hot weather and mixing method on changes in properties of ready mixed concrete during delivery. ACI Mater. J. 105, 438–444 (2008)

    Google Scholar 

  12. Nasir, M.; Al-Amoudi, O.S.B.; Al-Gahtani, H.J.; Maslehuddin, M.: Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions. Constr. Build. Mater. 112, 529–537 (2016)

    Google Scholar 

  13. Klieger, P.: Effect of mixing and curing temperature on concrete strength. ACI J. Proc. 54, 1063–1081 (1958)

    Google Scholar 

  14. Al-Gahtani, H.J.; Abbasi, A.-G.F.; Al-Amoudi, O.S.B.: Concrete mixture design for hot weather: experimental and statistical analyses. Mag. Concr. Res. 50, 95–105 (1998)

    Google Scholar 

  15. Almusallam, A.A.: Effect of environmental conditions on the properties of fresh and hardened concrete. Cem. Concr. Compos. 23, 353–361 (2001)

    Google Scholar 

  16. Abbasi, A.F.; Al-Tayyib, A.J.; Al-Ali, M.B.: Effect of hot weather on strength of reinforced concrete beams. Cem. Concr. Compos. 14(3), 209–221 (1992)

    Google Scholar 

  17. Nasir, M.; Baghabra Al-Amoudi, O.S.; Maslehuddin, M.: Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather. Constr. Build. Mater. 152, 943–953 (2017)

    Google Scholar 

  18. Al-Amoudi, O.S.B.; Maslehuddin, M.: Rasheeduzzafar, permeability of concrete: influential factors. In: 4th International Conference, Deterioration and Repair of Reinforced Concrete in the Arabian Gulf, pp. 717–734, (1993)

  19. Al-Amoudi, O.S.B.; Almusallam, A.A.; Khan, M.M.; Maslehuddin, M.: Effect of hot weather on compressive strength of plain and blended cement mortars. In: Fourth Saudi Engineering Conference, pp. 193–199. King Abdulaziz University, Jeddah, Saudi Arabia (1995)

  20. Ait-Aider, H.; Hannachi, N.E.; Mouret, M.: Importance of W/C ratio on compressive strength of concrete in hot climate conditions. Build. Environ. 42(6), 2461–2465 (2007)

    Google Scholar 

  21. Mannan, M.A.; Basri, H.B.; Zain, M.F.M.; Islam, M.N.: Effect of curing conditions on the properties of OPS-concrete. Build. Environ. 37, 1167–1171 (2002)

    Google Scholar 

  22. Powers, T.C.: A discussion of cement hydration in relation to the curing of concrete. Proc. Highw. Res. Board 27, 178–188 (1947)

    Google Scholar 

  23. Jooss, M.; Reinhardt, H.W.: Permeability and diffusivity of concrete as function of temperature. Cem. Concr. Res. 32, 1497–1504 (2002)

    Google Scholar 

  24. Saricimen, H.; Maslehuddin, M.; Al-Mana, A.I.; Eid, O.: Effect of field and laboratory curing on the durability characteristics of plain and pozzolan concretes. Cem. Concr. Compos. 14(3), 169–177 (1992)

    Google Scholar 

  25. Maslehuddin, M.; Ibrahim, M.; Shameem, M.; Ali, M.R.; Al-Mehthel, M.H.: Effect of curing methods on shrinkage and corrosion resistance of concrete. Constr. Build. Mater. 41, 634–641 (2013)

    Google Scholar 

  26. Wang, J.; Dhir, R.K.; Levitt, M.: Membrane curing of concrete: moisture loss. Cem. Concr. Res. 24(8), 1463–1474 (1994)

    Google Scholar 

  27. Bilgehan, M.; Turgut, P.: Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity. Res. Nondestruct. Eval. 21(1), 1–17 (2010)

    Google Scholar 

  28. Zhou, Q.; Wang, F.; Zhu, F.: Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems. Constr. Build. Mater. 125, 417–426 (2016)

    Google Scholar 

  29. Şimşek, B.; İç, Y.T.; Şimşek, E.H.: A RSM-based multi-response optimization application for determining optimal mix proportions of standard ready-mixed concrete. Arab. J. Sci. Eng. 41(4), 1435–1450 (2016)

    Google Scholar 

  30. Al-Gburi, M.; Jonasson, J.-E.; Nilsson, M.: Prediction of restraint in second cast sections of concrete culverts using artificial neural networks. Eur. J. Environ. Civ. Eng. 22(2), 226–245 (2018)

    Google Scholar 

  31. Ahmed, M.; Islam, S.; Nazar, S.; Khan, R.A.: A comparative study of popular concrete mix design methods from qualitative and cost-effective point of view for extreme environment. Arab. J. Sci. Eng. 41(4), 1403–1412 (2016)

    Google Scholar 

  32. Khademi, F.; Akbari, M.; Jamal, S.M.; Nikoo, M.: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front. Struct. Civ. Eng. 11(1), 90–99 (2017)

    Google Scholar 

  33. Hacene, S.M.A.B.; Ghomari, F.; Schoefs, F.; Khelidj, A.: Probabilistic modelling of compressive strength of concrete using response surface methodology and neural networks. Arab. J. Sci. Eng. 39(6), 4451–4460 (2014)

    Google Scholar 

  34. Asteris, P.G.; Kolovos, K.G.; Douvika, M.G.; Roinos, K.: Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 20(sup1), s102–s122 (2016)

    Google Scholar 

  35. Mashhadban, H.; Kutanaei, S.S.; Sayarinejad, M.A.: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Constr. Build. Mater. 119, 277–287 (2016)

    Google Scholar 

  36. Chithra, S.; Kumar, S.R.R.S.; Chinnaraju, K.; Ashmita, F.A.: A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Constr. Build. Mater. 114, 528–535 (2016)

    Google Scholar 

  37. Nazari, A.; Hajiallahyari, H.; Rahimi, A.; Khanmohammadi, H.; Amini, M.: Prediction compressive strength of Portland cement-based geopolymers by artificial neural networks. Neural Comput. Appl. 31(2), 733–741 (2019)

    Google Scholar 

  38. Başyigit, C.; Akkurt, I.; Kilincarslan, S.; Beycioglu, A.: Prediction of compressive strength of heavyweight concrete by ANN and FL models. Neural Comput. Appl. 19(4), 507–513 (2010)

    MATH  Google Scholar 

  39. Naderpour, H.; Rafiean, A.H.; Fakharian, P.: Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 16, 213–219 (2018)

    Google Scholar 

  40. Khashman, A.; Akpinar, P.: Non-destructive prediction of concrete compressive strength using neural networks. Procedia Comput. Sci. 108, 2358–2362 (2017)

    Google Scholar 

  41. Cheng, C.; Chau, K.; Sun, Y.; Lin, J.: Long-term prediction of discharges in Manwan Reservoir using artificial neural network models. In: International Symposium on Neural Networks (pp. 1040–1045). Springer, Berlin (2005)

  42. Xiao, G.; Ni, M.J.; Chi, Y.; Jin, B.S.; Xiao, R.; Zhong, Z.P.; Huang, Y.J.: Gasification characteristics of MSW and an ANN prediction model. Waste Manag. 29(1), 240–244 (2009)

    Google Scholar 

  43. Abhishek, K.; Kumar, A.; Ranjan, R.; Kumar, S.: A rainfall prediction model using artificial neural network. In: 2012 IEEE Control and System Graduate Research Colloquium (pp. 82–87). IEEE (2012)

  44. Afan, H.A.; El-Shafie, A.; Yaseen, Z.M.; Hameed, M.M.; Mohtar, W.H.M.W.; Hussain, A.: ANN based sediment prediction model utilizing different input scenarios. Water Resour. Manag. 29(4), 1231–1245 (2015)

    Google Scholar 

  45. Kshandelwal, M.; Armaghani, D.J.: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique. Geotech. Geol. Eng. 34(2), 605–620 (2016)

    Google Scholar 

  46. Binder, J.J.: On the use of the multivariate regression model in event studies. J. Account. Res. 23(1), 370–383 (1985). https://doi.org/10.2307/2490925

    Article  Google Scholar 

  47. Craven, B.D.; Islam, S.M.: Ordinary Least-Squares Regression. Sage Publications, Thousand Oaks (2011)

    Google Scholar 

  48. Ives, A.R.: For testing the significance of regression coefficients, go ahead and log-transform count data. Methods Ecol. Evol. 6(7), 828–835 (2015)

    Google Scholar 

  49. Yegnanarayana, B.: Artificial Neural Networks. PHI Learning Pvt. Ltd., New Delhi (2009)

    Google Scholar 

  50. He, X.; Xu, S.: Process Neural Networks: Theory and Applications. Springer, Berlin (2010)

    Google Scholar 

  51. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings 2004 IEEE International Joint Conference on, 2004, Neural Networks, vol. 2, pp. 985–990 (2004)

  52. Dawson, C.W.; Wilby, R.: An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47–66 (1998)

    Google Scholar 

  53. Wang, L.; Zeng, Y.; Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)

    Google Scholar 

  54. Gazder, U.; Al-Amoudi, O.S.B.; Khan, S.M.S.; Maslehuddin, M.: Predicting compressive strength of blended cement concrete with ANNs. Comput. Concr. 20(6), 627–634 (2017)

    Google Scholar 

  55. Ebrahimzadeh, A.; Ahmadi, M.; Safarnejad, M.: Classification of ECG signals using Hermite functions and MLP neural networks. J. AI Data Min. 4(1), 55–65 (2016)

    Google Scholar 

  56. Jin, R.; Chen, W.; Simpson, T.W.: Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 23(1), 1–13 (2001)

    Google Scholar 

  57. Willmott, C.J.; Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

    Google Scholar 

  58. Saranya, C.; Manikandan, G.: A study on normalization techniques for privacy preserving data mining. Int. J. Eng. Technol. 5(3), 2701–2704 (2013)

    Google Scholar 

  59. Behnood, A.; Verian, K.P.; Modiri Gharehveran, M.: Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength. Constr. Build. Mater. 98, 519–529 (2015)

    Google Scholar 

  60. Yousif, S.T.; Abdul-Kareem, O.M.; Ibrahim, K.A.: Artificial neural network model for predicting the compressive strength of concrete using ultrasonic pulse velocity. Muthanna J. Eng. Technol. 5(1), 72–79 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by King Fahd University of Petroleum and Minerals (KFUPM) for this study under KFUPM research grant # RG1101. Imam Abdulrahman Bin Faisal University is also thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nasir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, M., Gazder, U., Maslehuddin, M. et al. Prediction of Properties of Concrete Cured Under Hot Weather Using Multivariate Regression and ANN Models. Arab J Sci Eng 45, 4111–4123 (2020). https://doi.org/10.1007/s13369-020-04403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04403-y

Keywords

Navigation