Skip to main content

Advertisement

Log in

Measuring and Pre-concentration of Lanthanum Using Fe3O4@Chitosan Nanocomposite with Solid-phase Microextraction for ICP-OES Determination

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A solid-phase microextraction was performed using Fe3O4 nanoparticle coated with the chitosan, as a green and biodegradable polymer, for the pre-concentration of La (III) in aqueous solutions. The Fe3O4 magnetic nanoparticles were initially synthesized and properly coated with chitosan as adsorbent, and desorption step was successfully conducted using nitric acid. After desorption, analyte was determined with ICP-OES. The effects of different parameters, including pH, nanoparticle amount, concentration and volume of desorption acid, adsorption and desorption time, stirring rate, temperature and salt effect on the microextraction process, were investigated. The calibration curve was plotted, and a linear response range of 0.008–0.1 ng L−1 with a detection limit of 0.008 ng L−1 was obtained. This method was successfully implemented on two samples of river water, and favorable results were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Boer, M.; Lammertsma, K.: Scarcity of rare earth elements. Chemsuschem 6(11), 2045–2055 (2013)

    Google Scholar 

  2. Harkins, W.D.; Davies, E.C.; Clark, G.L.: The orientation of molecules in the surfaces of liquids, the energy relations at surfaces, solubility, adsorption, emulsification, molecular association, and the effect of acids and bases on interfacial tension. 1 (surface energy vi.). J. Am. Chem. Soc. 39(4), 541–596 (1917)

    Google Scholar 

  3. Taylor, S.; McLennan, S.: The Continental Crust: Its Evolution and Composition. Blackwell, London (1985)

    Google Scholar 

  4. Moeller, T.: The Chemistry of the Lanthanides: Pergamon Texts in Inorganic Chemistry. Elsevier, Amsterdam (2013)

    Google Scholar 

  5. Singh, A.K.; Saxena, P.; Mehtab, S.; Gupta, B.: A selective membrane electrode for lanthanum(III) ion based on a hexaaza macrocycle derivative as ionophore. Anal. Sci. 22, 1339–1334 (2006)

    Google Scholar 

  6. Haghniaz, R.; Bhayani, K.R.; Umrani, R.D.; Paknikar, K.M.: Dextran stabilized lanthanum strontium manganese oxide nanoparticles for magnetic resonance imaging. RSC Adv. 3(40), 18489–18497 (2013)

    Google Scholar 

  7. Martin, B.; Richardson, F.S.: Lanthanides as probes for calcium in biological systems. Q. Rev. Biophys. 12(2), 181–209 (1979)

    Google Scholar 

  8. Chen, X.-G.; Lee, C.M.; Park, H.-J.: O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid modified chitosan in the aqueous system. J. Agric. Food Chem. 51(10), 3135–3139 (2003)

    Google Scholar 

  9. Alonso, M.J.: Nanomedicines for overcoming biological barriers. Biomed. Pharmacother. 58(3), 168–172 (2004)

    Google Scholar 

  10. Bozkir, A.; Saka, O.M.: Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv. 11(2), 107–112 (2004)

    Google Scholar 

  11. Juang, R.-S.; Shao, H.-J.: A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res. 36(12), 2999–3008 (2002)

    Google Scholar 

  12. Ng, J.; Cheung, W.; McKay, G.: Equilibrium studies of the sorption of Cu (II) ions onto chitosan. J. Colloid Interface Sci. 255(1), 64–74 (2002)

    Google Scholar 

  13. Karthikeyan, G.; Anbalagan, K.; Andal, N.M.: Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan. J. Chem. Sci. 116(2), 119–127 (2004)

    Google Scholar 

  14. Suginta, W.; Khunkaewla, P.; Schulte, A.: Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev. 113(7), 5458–5479 (2013)

    Google Scholar 

  15. Tong, J.; Chen, L.: Preparation and application of magnetic chitosan derivatives in separation processes. Anal. Lett. 46(17), 2635–2656 (2013)

    Google Scholar 

  16. Honda, H.; Kawabe, A.; Shinkai, M.; Kobayashi, T.: Development of chitosan-conjugated magnetite for magnetic cell separation. J. Ferment. Bioeng. 86(2), 191–196 (1998)

    Google Scholar 

  17. Atar, N.; Eren, T.; Yola, M.L.; Karimi-Maleh, H.; Demirdögen, B.: Magnetic iron oxide and iron oxide@ gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv. 5(33), 26402–26409 (2015)

    Google Scholar 

  18. Gnanasekaran, L.; Hemamalini, R.; Rajendran, S.; Qin, J.; Yola, M.L.; Atar, N.; Gracia, F.: Nanosized Fe3O4 incorporated on a TiO2 surface for the enhanced photocatalytic degradation of organic pollutants. J. Mol. Liq. 287, 110967 (2019)

    Google Scholar 

  19. Vicente, O.; Masi, A.; Martinez, L.; Olsina, R.; Marchevsky, E.: On-line preconcentration system for lanthanum determination in urine using FI-ICP-AES. Anal. Chim. Acta 366(1–3), 201–207 (1998)

    Google Scholar 

  20. Agrawal, Y.K.; Shrivastav, P.: Solvent extraction, spectrophotometric and inductively coupled plasma atomic emission spectroscopic (ICP-AES) determination of lanthanum (III) with crown hydroxamic acid. Talanta 44(7), 1307–1312 (1997)

    Google Scholar 

  21. Fujimori, E.; Hayashi, T.; Inagaki, K.; Haraguchi, H.: Determination of lanthanum and rare earth elements in bovine whole blood reference material by ICP-MS after coprecipitation preconcentration with heme-iron as coprecipitant. Fresenius J. Anal. Chem. 363(3), 277–282 (1999)

    Google Scholar 

  22. Kapoor, H.; Agrawal, Y.; Verma, P.: Separation and gravimetric determination of cerium and lanthanum with N-m-tolyl-m-nitrobenzohydroxamic acid. Talanta 22(2), 193–196 (1975)

    Google Scholar 

  23. Sita, N.M.; Prasada, T.; Iyer, C.; Damodaran, A.: Ultratrace determination of europium in high-purity lanthanum, praseodymium and dysprosium oxides by luminescence spectrometry. Talanta 44(3), 423–426 (1997)

    Google Scholar 

  24. Wenli, L.; Curini, R.; Gasparini, G.; Casarci, M.; Mattia, B.; Traverso, D.; Bellisario, F.: Study of on-line analysis using energy dispersive X-ray fluorescence spectrometry for controlling lanthanum and neodymium extraction. Anal. Chim. Acta 362(2–3), 253–260 (1998)

    Google Scholar 

  25. Wang, J.; Farias, P.A.; Mahmoud, J.S.: Trace determination of lanthanum, cerium, and praseodymium based on adsorptive stripping voltammetry. Anal. Chim. Acta 171, 215–223 (1985)

    Google Scholar 

  26. Hosseini, M.; Ganjali, M.R.; Abkenar, S.D.; Veismohammadi, B.; Riahl, S.; Norouzi, P.; Salavati-Niasari, M.: Highly selective ratiometric fluorescent sensor for La (III) ion based on a new Schiff’s base. Anal. Lett. 42(7), 1029–1040 (2009)

    Google Scholar 

  27. Ali, T.A.; Mohamed, G.G.: Potentiometric determination of La (III) in polluted water samples using modified screen-printed electrode by self-assembled mercapto compound on silver nanoparticles. Sens. Actuator B Chem 216, 542–550 (2015)

    Google Scholar 

  28. Du, P.-Y.; Li, H.; Fu, X.; Gu, W.; Liu, X.: A 1D anionic lanthanide coordination polymer as an adsorbent material for the selective uptake of cationic dyes from aqueous solutions. Dalton Trans. 44(30), 13752–13759 (2015)

    Google Scholar 

  29. Fisher, A.; Kara, D.: Determination of rare earth elements in natural water samples—a review of sample separation, preconcentration and direct methodologies. Anal. Chim. Acta 935, 1–29 (2016)

    Google Scholar 

  30. Khan, A.A.; Paquiza, L.; Khan, A.: An advanced nano-composite cation-exchanger polypyrrole zirconium titanium phosphate as a Th(IV)-selective potentiometric sensor: preparation, characterization and its analytical application. J. Mater. Sci. 45(13), 3610–3625 (2010)

    Google Scholar 

  31. Kaushik, A.; Khan, R.; Solanki, P.R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B.: Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 24(4), 676–683 (2008)

    Google Scholar 

  32. Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A.: The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    Google Scholar 

  33. Zhang, M.; Qin, J.; Rajendran, S.; Zhang, X.; Liu, R.: Heterostructured d-Ti3C2/TiO2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic hydrogen production activity. Chemsuschem 11(24), 4226–4236 (2018)

    Google Scholar 

  34. Suleiman, J.S.; Hu, B.; Peng, H.; Huang, C.: Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES. Talanta 77(5), 1579–1583 (2009)

    Google Scholar 

  35. Kumar, A.S.K.; Jiang, S.-J.: Chitosan-functionalized graphene oxide: a novel adsorbent an efficient adsorption of arsenic from aqueous solution. J. Environ. Chem. Eng. 4(2), 1698–1713 (2016)

    Google Scholar 

  36. Mester, Z.; Sturgeon, R.; Pawliszyn, J.: Solid phase microextraction as a tool for trace element speciation. Spectrochim. Acta B 56(3), 233–260 (2001)

    Google Scholar 

  37. Spietelun, A.; Pilarczyk, M.; Kloskowski, A.; Namieśnik, J.: Current trends in solid-phase microextraction (SPME) fibre coatings. Chem. Soc. Rev. 39(11), 4524–4537 (2010)

    Google Scholar 

  38. Liang, P.; Liu, Y.; Guo, L.: Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes. Spectrochim. Acta B 60(1), 125–129 (2005)

    Google Scholar 

  39. Agrawal, Y.: Poly (β-styryl)-(1, 2-methanofullerene-C60)-61-formo hydroxamic acid for the solid phase extraction, separation and preconcentration of rare earth elements. Fuller. Nanotube Carbon Nanostruct. 15(5), 353–365 (2007)

    Google Scholar 

  40. Berijani, S.; Ganjali, M.R.; Sereshti, H.; Tabatabaei, S.H.; Norouzi, P.: Application of a new modified magnetic nanoparticle as a selective sorbent for preconcentration and extraction of europium in environmental water samples prior to ICP-OES determination. J. Iran. Chem. Soc. 12(4), 737–742 (2015)

    Google Scholar 

  41. Su, S.; Chen, B.; He, M.; Hu, B.; Xiao, Z.: Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@ SiO2@ polyaniline–graphene oxide composite. Talanta 119, 458–466 (2014)

    Google Scholar 

  42. Zhang, Y.; Zhong, C.; Zhang, Q.; Chen, B.; He, M.; Hua, B.: Graphene oxide–TiO2 composite as a novel adsorbent for the preconcentration of heavy metals and rare earth elements in environmental samples followed by on-line inductively coupled plasma optical emission spectrometry detection. RSC Adv. 5(8), 5996–6005 (2015)

    Google Scholar 

  43. Li, D.; Chang, X.; Hu, Z.; Wang, Q.; Li, R.; Chai, X.: Samarium (III) adsorption on bentonite modified with N-(2-hydroxyethyl) ethylenediamine. Talanta 83(5), 1742–1747 (2011)

    Google Scholar 

  44. Murty, D.; Chakrapani, G.: Preconcentration of rare earth elements on activated carbon and its application to groundwater and sea-water analysis. J. Anal. Atom Spectrom. 11(9), 815–820 (1996)

    Google Scholar 

  45. Wang, Z.-H.; Yan, X.P.; Wang, Z.P.; Zhang, Z.P.; Liu, L.W.: Flow injection on-line solid phase extraction coupled with inductively coupled plasma mass spectrometry for determination of (ultra) trace rare earth elements in environmental materials using maleic acid grafted polytetrafluoroethylene fibers as sorbent. J. Am. Soc. Mass Spectrom. 17(9), 1258–1264 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors thank Islamic Azad University Branch of Mashhad for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboube Masrournia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi, N., Masrournia, M. & Abedi, M. Measuring and Pre-concentration of Lanthanum Using Fe3O4@Chitosan Nanocomposite with Solid-phase Microextraction for ICP-OES Determination. Arab J Sci Eng 45, 121–129 (2020). https://doi.org/10.1007/s13369-019-04237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04237-3

Keywords

Navigation