Skip to main content
Log in

A Novel Approach Based on Line Inequality Concept and Sine–Cosine Algorithm for Estimating Optimal Reach Setting of Quadrilateral Relays

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Quadrilateral characteristics of distance relays are widely used in modern power systems because of its lesser sensitivity to the variation in operating scenarios and fault parameters. The performance of quadrilateral relay is heavily dependent on the proper selection of reach settings. The reach accuracy of distance relays with settings estimated using conventional techniques deteriorates during stressed conditions such as load variation, power swings and remote end infeed/outfeed variations. A proper setting in addition to avoiding overreach and underreach cases should also posses higher loadability limit. In this regard, the relay reach setting has been mathematically formulated as a constrained optimization problem in the present work, with the aim of maintaining the trade-off between the reach accuracy and the loadability limit in terms of area enclosed by the relay characteristics. Sine–cosine algorithm has been adopted to solve the multiobjective optimization problem and hence obtain the reach setting of the quadrilateral relay. The performance of the proposed scheme in terms of providing optimal reach setting has been extensively examined against wide variation in fault parameters and operating scenarios. Further, in order to test the effectiveness of the proposed scheme for real-time applications, the suitability of the quadrilateral relay has also been validated by performing real-time simulations using OPAL-RT digital simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kumar, J.; Jena, P.: Adaptive distance relaying for grid-connected line with consideration of single-phase auto-reclosing. Arab. J. Sci. Eng. 44, 1855–1867 (2019)

    Article  Google Scholar 

  2. Horowitz, S.H.; Phadke, A.G.: Power System Relaying, vol. 22. Wiley, New York (2008)

    Book  Google Scholar 

  3. Ziegler, G.: Numerical Distance Protection: Principles and Applications. Wiley, New York (2011)

    Google Scholar 

  4. Cook, V.: Analysis of Distance Protection, vol. 1. Research Studies Press, Boston (1985)

    Google Scholar 

  5. Network Protection and Automation Guide Protective Relays, Measurement and Control, Alstom Grid, Stafford, UK (2011)

  6. Sorrentino, E.; Rojas, E.; Hernández, J.: Method for setting the resistive reach of quadrilateral characteristics of distance relays. In: Universities Power Engineering Conference (UPEC), 2009 Proceedings of the 44th International, pp. 1–5 (2009)

  7. El-Arroudi, K.; Joos, G.; McGillis, D.T.; Brearley, R.: Comprehensive transmission distance protection settings using an intelligent-based analysis of events and consequences. IEEE Trans. Power Deliv. 20(3), 1817–1824 (2005)

    Article  Google Scholar 

  8. Stedall, B.; Moore, P.; Johns, A.; Goody, J.; Burt, M.: An investigation into the use of adaptive setting techniques for improved distance back-up protection. IEEE Trans. Power Deliv. 11(2), 757–762 (1996)

    Article  Google Scholar 

  9. Gilany, M.I.; Hasan, B.-E.; Malik, O.P.: The Egyptian Electricity Authority strategy for distance relay setting: problems and solutions. Electric Power Syst. Res. 56(2), 89–94 (2000)

    Article  Google Scholar 

  10. Makwana, V.H.; Bhalja, B.R.: A new digital distance relaying scheme for compensation of high-resistance faults on transmission line. IEEE Trans. Power Deliv. 27(4), 2133–2140 (2012)

    Article  Google Scholar 

  11. Liu, Q.K.; Huang, S.F.; Liu, H.Z.; Liu, W.S.: Adaptive impedance relay with composite polarizing voltage against fault resistance. IEEE Trans. Power Deliv. 23(2), 586–592 (2008)

    Article  MathSciNet  Google Scholar 

  12. De Sa, J.P.; Afonso, J.; Rodrigues, R.: A probabilistic approach to setting distance relays in transmission networks. IEEE Trans. Power Deliv. 12(2), 681–686 (1997)

    Google Scholar 

  13. Sorrentino, E.; De Andrade, V.: Optimal-probabilistic method to compute the reach settings of distance relays. IEEE Trans. Power Deliv. 26(3), 1522–1529 (2011)

    Article  Google Scholar 

  14. Mohajeri, A.; Seyedi, H.; Sabahi, M.: Optimal setting of distance relays quadrilateral characteristic considering the uncertain effective parameters. Int. J. Electr. Power Energy Syst. 73, 1051–1059 (2015)

    Article  Google Scholar 

  15. Li, K.K.; Lai, L.L.; David, A.K.: Stand alone intelligent digital distance relay. IEEE Trans. Power Syst. 15(1), 137–142 (2000)

    Article  Google Scholar 

  16. Upendar, J.; Gupta, C.P.; Singh, G.K.: Comprehensive adaptive distance relaying scheme for parallel transmission lines. IEEE Trans. Power Deliv. 26(2), 1039–1052 (2011)

    Article  Google Scholar 

  17. Thompson, M.J.; Heidfeld, D.L.: Transmission line setting calculations-beyond the cookbook. In: 2015 68th Annual Conference for Protective Relay Engineers, pp. 850–865 (2015)

  18. Thompson, M.J.; Somani, A.: A tutorial on calculating source impedance ratios for determining line length. In: 2015 68th Annual Conference for Protective Relay Engineers, pp. 833–841 (2015)

  19. Mir, M.; Imam, M.H.: A mathematical technique for the optimum reach setting of distance relays considering system uncertainties. Electric Power Syst. Res. 17(2), 101–108 (1989)

    Article  Google Scholar 

  20. Davvdova, N.; Shchetinin, D.; Hug, G.: Optimization of first zone boundary of adaptive distance protection for flexible transmission lines. In: 2018 Power Systems Computation Conference (PSCC), pp. 1–7 (2018)

  21. Tavalaei, J.; Habibuddin, M.H.; Naderipour, A.; Mohd Zin, A.A.: Development of nonuniform transmission line protection for accurate distance protection: computational analysis of an adaptive distance relay characteristic. Int. Trans. Electr. Energy Syst. 28(4), 2514 (2018)

    Article  Google Scholar 

  22. Shabani, M.; Noghabi, A.S.; Farshad, M.: A new optimization formulation for determining the optimum reach setting of distance relay zones by probabilistic modeling of uncertainties. Automatika 57(4), 871–880 (2016)

    Article  Google Scholar 

  23. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  24. Müller, H.H.; Castro, C.A.: Genetic algorithm-based phasor measurement unit placement method considering observability and security criteria. IET Gener. Transm. Distrib. 10(1), 270–280 (2016)

    Article  Google Scholar 

  25. Liang, J.; Xu, W.; Yue, C.; Yu, K.; Song, H.; Crisalle, O.D.; Qu, B.: Multimodal multiobjective optimization with differential evolution. Swarm Evol. Comput. 44, 1028–1059 (2019)

    Article  Google Scholar 

  26. Peng, L.; Liu, S.; Liu, R.; Wang, L.: Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy 162, 1301–1314 (2018)

    Article  Google Scholar 

  27. Albasri, F.A.; Alroomi, A.R.; Talaq, J.H.: Optimal coordination of directional overcurrent relays using biogeography-based optimization algorithms. IEEE Trans. Power Deliv. 30(4), 1810–1820 (2015)

    Article  Google Scholar 

  28. Tungadio, D.H.; Numbi, B.P.; Siti, M.W.; Jimoh, A.A.: Particle swarm optimization for power system state estimation. Neurocomputing 148, 175–180 (2015)

    Article  Google Scholar 

  29. Wang, L.; Lv, S.X.; Zeng, Y.R.: Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China. Energy 155, 1013–1031 (2018)

    Article  Google Scholar 

  30. Rivas, A.E.L.; Pareja, L.A.G.; Abrão, T.: Coordination of distance and directional overcurrent relays using an extended continuous domain ACO algorithm and an hybrid ACO algorithm. Electric Power Syst. Res. 170, 259–272 (2019)

    Article  Google Scholar 

  31. Bouchekara, H.R.E.H.; Abido, M.A.; Chaib, A.E.; Mehasni, R.: Optimal power flow using the league championship algorithm: a case study of the Algerian power system. Energy Convers. Manag. 87, 58–70 (2014)

    Article  Google Scholar 

  32. Elazim, S.A.; Ali, E.S.: Optimal locations and sizing of capacitors in radial distribution systems using mine blast algorithm. Electr. Eng. 100(1), 1–9 (2018)

    Article  Google Scholar 

  33. Jordehi, A.R.: Optimal setting of TCSCs in power systems using teaching–learning-based optimisation algorithm. Neural Comput. Appl. 26(5), 1249–1256 (2015)

    Article  Google Scholar 

  34. Bouchekara, H.R.E.H.: Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. 24, 879–888 (2014)

    Article  Google Scholar 

  35. Bouchekara, H.R.; Chaib, A.E.; Abido, M.A.; El-Sehiemy, R.A.: Optimal power flow using an improved colliding bodies optimization algorithm. Appl. Soft Comput. 42, 119–131 (2016)

    Article  Google Scholar 

  36. Shuaib, Y.M.; Kalavathi, M.S.; Rajan, C.C.A.: Optimal capacitor placement in radial distribution system using gravitational search algorithm. Int. J. Electr. Power Energy Syst. 64, 384–397 (2015)

    Article  Google Scholar 

  37. Das, S.; Bhattacharya, A.; Chakraborty, A.K.: Solution of short-term hydrothermal scheduling using sine cosine algorithm. Soft Comput. 22(19), 6409–6427 (2018)

    Article  MATH  Google Scholar 

  38. Mahdad, B.; Srairi, K.: A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electr. Eng. 100(2), 913–933 (2018)

    Article  Google Scholar 

  39. Tasnin, W.; Saikia, L.C.: Maiden application of an sine–cosine algorithm optimised FO cascade controller in automatic generation control of multi-area thermal system incorporating dish-Stirling solar and geothermal power plants. IET Renew. Power Gener. 12(5), 585–597 (2017)

    Article  Google Scholar 

  40. Gonidakis, D.; Vlachos, A.: A new sine cosine algorithm for economic and emission dispatch problems with price penalty factors. J. Inf. Optim. Sci. 40(3), 679–697 (2019)

    MathSciNet  Google Scholar 

  41. Attia, A.F.; El Sehiemy, R.A.; Hasanien, H.M.: Optimal power flow solution in power systems using a novel Sine–Cosine algorithm. Int. J. Electr. Power Energy Syst. 99, 331–343 (2018)

    Article  Google Scholar 

  42. Padmanaban, S.; Priyadarshi, N.; Holm-Nielsen, J.B.; Bhaskar, M.S.; Azam, F.; Sharma, A.K.; Hossain, E.: A novel modified sine-cosine optimized MPPT algorithm for grid integrated PV system under real operating conditions. IEEE Access 7, 10467–10477 (2019)

    Article  Google Scholar 

  43. Yazdaninejadi, A.; Nazarpour, D.; Talavat, V.: Coordination of mixed distance and directional overcurrent relays: miscoordination elimination by utilizing dual characteristics for DOCR s. Int. Trans. Electr. Energy Syst. 29(3), e2762 (2019)

    Article  Google Scholar 

  44. Reddy, K.S.; Panwar, L.K.; Panigrahi, B.K.; Kumar, R.: A new binary variant of sine–cosine algorithm: development and application to solve profit-based unit commitment problem. Arab. J. Sci. Eng. 43(8), 4041–4056 (2018)

    Article  Google Scholar 

  45. Ram, B.: Power System Protection and Switchgear. Tata McGraw-Hill Education, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebha Koley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S.K., Koley, E. & Ghosh, S. A Novel Approach Based on Line Inequality Concept and Sine–Cosine Algorithm for Estimating Optimal Reach Setting of Quadrilateral Relays. Arab J Sci Eng 45, 1499–1511 (2020). https://doi.org/10.1007/s13369-019-04004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04004-4

Keywords

Navigation