Skip to main content
Log in

Comparative Sorption of Nickel from an Aqueous Solution Using Biochar Derived from Banana and Orange Peel Using a Batch System: Kinetic and Isotherm Models

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Biochar pyrolyzed at 800 °C from banana (Bb) and orange peel (OPb) was applied in the sorption of nickel (Ni2+) using a batch system. OPb shows a higher affinity for Ni2+ than Bb. A rapid increase in sorption capacity and percentage removal was observed for both types of biochar with an equilibrium time of 30 min. The adsorption behavior was described using a pseudo-second-order model, indicating chemisorption as the rate-limiting step. A linear increase in the sorption capacity of 340 and 212 mg g−1 was observed for OPb and Bb, respectively, upon increasing the initial Ni2+ concentration (50–300 mg g−1) with a 40% decrease in removal efficiency. An increase in the sorption capacity of 78 and 88 mg g−1 for OPb and Bb, respectively, with a 15% increase in removal efficiency was observed for both absorbents upon increasing the solution pH from 2 to 8. OPb shows enhanced performance than Bb at all pH values, and an optimum pH of 8 was selected. An increase in the sorption capacity of ~ 120 mg g−1 was observed upon increasing the biochar dose (0.1–0.5 g), and the optimum dose was 0.7 g. The Langmuir isotherm model exhibits the best fit to the adsorption data (R2 = 0.99), whereas H–J isotherm (R2 < 0.70) displayed the least best fit. The effective sorption of Ni2+ demonstrates the potential of plant-based biochar as economically viable adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kamari, A.; Yusoff, S.N.M.; Abdullah, F.; Putra, W.P.: Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: adsorption and characterisation studies. J. Environ. Chem. Eng. 2, 1912–1919 (2014). https://doi.org/10.1016/j.jece.2014.08.014

    Article  Google Scholar 

  2. Shafiq, M.; Alazba, A.A.; Amin, M.T.: Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review. Sains Malays. 47, 35–49 (2018). https://doi.org/10.17576/jsm-2018-4701-05

    Article  Google Scholar 

  3. Bartczak, P.; Norman, M.; Klapiszewski, Ł.; Karwańska, N.; Kawalec, M.; Baczyńska, M.; Wysokowski, M.; Zdarta, J.; Ciesielczyk, F.; Jesionowski, T.: Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: a kinetic and equilibrium study. Arab. J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.07.018

    Article  Google Scholar 

  4. Ferreira, A.M.; Coutinho, J.A.P.; Fernandes, A.M.; Freire, M.G.: Complete removal of textile dyes from aqueous media using ionic-liquid-based aqueous two-phase systems. Sep. Purif. Technol. 128, 58–66 (2014). https://doi.org/10.1016/j.seppur.2014.02.036

    Article  Google Scholar 

  5. Shah, J.; Kumar, S.; Sharma, S.; Sharma, R.: Removal of nickel from aqueous solution by using low cost adsorbents: a review. Int. J. Sci. Eng. Appl. Sci. (IJSEAS) 2, 26 (2016)

    Google Scholar 

  6. Aslan, S.; Yildiz, S.; Ozturk, M.: Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dried activated sludge biomass. Pol. J. Chem. Technol. 1, 11 (2018). https://doi.org/10.2478/pjct-2018-0034

    Article  Google Scholar 

  7. Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-H.; Babel, S.: Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98 (2006). https://doi.org/10.1016/j.cej.2006.01.015

    Article  Google Scholar 

  8. Rudnicki, P.; Hubicki, Z.; Kołodyńska, D.: Evaluation of heavy metal ions removal from acidic waste water streams. Chem. Eng. J. 252, 362–373 (2014). https://doi.org/10.1016/j.cej.2014.04.035

    Article  Google Scholar 

  9. Ozaki, H.; Sharma, K.; Saktaywin, W.: Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144, 287–294 (2002). https://doi.org/10.1016/S0011-9164(02)00329-6

    Article  Google Scholar 

  10. Mohsen-Nia, M.; Montazeri, P.; Modarress, H.: Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 217, 276–281 (2007). https://doi.org/10.1016/j.desal.2006.01.043

    Article  Google Scholar 

  11. López-Maldonado, E.A.; Oropeza-Guzman, M.T.; Jurado-Baizaval, J.L.; Ochoa-Terán, A.: Coagulation–flocculation mechanisms in wastewater treatment plants through zeta potential measurements. J. Hazard. Mater. 279, 1–10 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.025

    Article  Google Scholar 

  12. Nutiu, E.: Waste water treatment using a new type of coagulant. Procedia Technol. 19, 479–482 (2015). https://doi.org/10.1016/j.protcy.2015.02.068

    Article  Google Scholar 

  13. Skubal, L.R.; Meshkov, N.K.; Rajh, T.; Thurnauer, M.: Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobiol. Chem. 148, 393–397 (2002). https://doi.org/10.1016/S1010-6030(02)00069-2

    Article  Google Scholar 

  14. Barakat, M.A.; Schmidt, E.: Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 256, 90–93 (2010). https://doi.org/10.1016/j.desal.2010.02.008

    Article  Google Scholar 

  15. Borbély, G.; Nagy, E.: Removal of zinc and nickel ions by complexation-membrane filtration process from industrial wastewater. Desalination 240, 218–226 (2009). https://doi.org/10.1016/j.desal.2007.11.073

    Article  Google Scholar 

  16. Barakat, M.A.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011). https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  Google Scholar 

  17. Malkoc, E.; Nuhoglu, Y.: Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. 127, 120–128 (2005). https://doi.org/10.1016/j.jhazmat.2005.06.030

    Article  Google Scholar 

  18. Ahluwalia, S.S.; Goyal, D.: Removal of heavy metals by waste tea leaves from aqueous solution. Eng. Life Sci. 5, 158–162 (2005). https://doi.org/10.1002/elsc.200420066

    Article  Google Scholar 

  19. Annadurai, G.; Juang, R.S.; Lee, D.J.: Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol. 47, 185–190 (2003)

    Article  Google Scholar 

  20. Alam, M.; Rais, S.; Aslam, M.: Role of Azadirachta indica (neem) biomass in the removal of Ni(II) from aqueous solution. Desalin. Water Treat. 21, 220–227 (2010). https://doi.org/10.5004/dwt.2010.1506

    Article  Google Scholar 

  21. Lisy, L.; Subha, L.: Adsorption isotherm and kinetic studies of nickel(II) ions removal using neem bark charcoal and commercially activated carbon: a comparative study. Int. J. Adv. Sci. Res. 1, 16–20 (2016)

    Google Scholar 

  22. Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.; Babel, S.: Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci. Total Environ. 366, 409–426 (2006). https://doi.org/10.1016/j.scitotenv.2005.10.001

    Article  Google Scholar 

  23. Sarkar, D.; Bandyopadhyay, A.: Adsorptive mass transport of dye on rice husk ash. J. Water Resour. Prot. 02, 424–431 (2010). https://doi.org/10.4236/jwarp.2010.25049

    Article  Google Scholar 

  24. Parab, H.; Joshi, S.; Shenoy, N.; Lali, A.; Sarma, U.S.; Sudersanan, M.: Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem. 41, 609–615 (2006). https://doi.org/10.1016/j.procbio.2005.08.006

    Article  Google Scholar 

  25. Moreno, J.C.; Gómez, R.; Giraldo, L.: Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal. Materials 3, 452–466 (2010). https://doi.org/10.3390/ma3010452

    Article  Google Scholar 

  26. El-Maghrabi, H.H.; Mikhail, S.: Removal of heavy metals via adsorption using natural clay material. J. Environ. Earth Sci. 11, 10361 (2014)

    Google Scholar 

  27. Ayangbenro, A.S.; Babalola, O.O.: A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health 14, 94 (2017). https://doi.org/10.3390/ijerph14010094

    Article  Google Scholar 

  28. Alboghobeish, H.; Tahmourespour, A.; Doudi, M.: The study of nickel resistant bacteria (NiRB) isolated from wastewaters polluted with different industrial sources. J. Environ. Health Sci. Eng. 12, 44 (2014). https://doi.org/10.1186/2052-336X-12-44

    Article  Google Scholar 

  29. Villaescusa, I.; Fiol, N.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J.: Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 38, 992–1002 (2004). https://doi.org/10.1016/j.watres.2003.10.040

    Article  Google Scholar 

  30. Gupta, V.K.; Jain, C.K.; Ali, I.; Sharma, M.; Saini, V.K.: Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 37, 4038–4044 (2003). https://doi.org/10.1016/S0043-1354(03)00292-6

    Article  Google Scholar 

  31. Tan, K.A.; Morad, N.; Teng, T.T.; Norli, I.; Panneerselvam, P.: Removal of cationic dye by magnetic nanoparticle (Fe3O4) impregnated onto activated maize cob powder and kinetic study of dye waste adsorption. APCBEE Procedia 1, 83–89 (2012). https://doi.org/10.1016/j.apcbee.2012.03.015

    Article  Google Scholar 

  32. Ahmad, M.; Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Abduljabbar, A.S.; Al-Wabel, M.I.: Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions. Environ. Sci. Pollut. Res. Int. 25, 25757–25771 (2018). https://doi.org/10.1007/s11356-017-0125-9

    Article  Google Scholar 

  33. Usman, A.R.A.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I.: Biochar production from date palm waste: charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis 115, 392–400 (2015). https://doi.org/10.1016/j.jaap.2015.08.016

    Article  Google Scholar 

  34. Chen, B.; Chen, Z.: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76, 127–133 (2009). https://doi.org/10.1016/j.chemosphere.2009.02.004

    Article  Google Scholar 

  35. Komkiene, J.; Baltrenaite, E.: Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase. Int. J. Environ. Sci. Technol. 13, 471–482 (2016). https://doi.org/10.1007/s13762-015-0873-3

    Article  Google Scholar 

  36. Kiros, A.; Gholap, A.V.; Gigante, G.E.: Fourier transform infrared spectroscopic characterization of clay minerals from rocks of Lalibela churches, Ethiopia. Int. J. Phys. Sci. 8, 109–119 (2013). https://doi.org/10.5897/IJPS12.714

    Article  Google Scholar 

  37. Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T.: Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11, 6613–6621 (2014). https://doi.org/10.5194/bg-11-6613-2014

    Article  Google Scholar 

  38. Rostamian, R.; Heidarpour, M.; Mousavi, S.F.; Afyuni, M.: Characterization and sodium sorption capacity of biochar and activated carbon prepared from rice husk. J. Agr. Sci. Tech. 17, 1057–1069 (2015)

    Google Scholar 

  39. Dawood, S.; Sen, T.K.; Phan, C.: Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: kinetic, equilibrium, mechanism, thermodynamic and process design. Desalin. Water Treat. 57, 28964–28980 (2016). https://doi.org/10.1080/19443994.2016.1188732

    Article  Google Scholar 

  40. Qadeer, R.; Akhtar, S.: Kinetics study of lead ion adsorption on active carbon. Turk. J. Chem. 29, 95–100 (2005)

    Google Scholar 

  41. Bhattacharyya, K.G.; Sharma, A.: Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder. Dyes Pigments 65, 51–59 (2005). https://doi.org/10.1016/j.dyepig.2004.06.016

    Article  Google Scholar 

  42. Li, Y.; Du, Q.; Liu, T.; Sun, J.; Jiao, Y.; Xia, Y.; Xia, L.; Wang, Z.; Zhang, W.; Wang, K.; Zhu, H.; Wu, D.: Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater. Res. Bull. 47, 1898–1904 (2012). https://doi.org/10.1016/j.materresbull.2012.04.021

    Article  Google Scholar 

  43. Kumar, K.V.; Kumaran, A.: Removal of methylene blue by mango seed kernel powder. Biochem. Eng. J. 27, 83–93 (2005). https://doi.org/10.1016/j.bej.2005.08.004

    Article  Google Scholar 

  44. Al-Homaidan, A.A.; Al-Houri, H.J.; Al-Hazzani, A.A.; Elgaaly, G.; Moubayed, N.M.S.: Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab. J. Chem. 7, 57–62 (2014). https://doi.org/10.1016/j.arabjc.2013.05.022

    Article  Google Scholar 

  45. Bhaumik, M.; Setshedi, K.; Maity, A.; Onyango, M.S.: Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep. Purif. Technol. 110, 11–19 (2013). https://doi.org/10.1016/j.seppur.2013.02.037

    Article  Google Scholar 

  46. Putra, W.P.; Kamari, A.; Yusoff, S.N.M.; Ishak, C.F.; Mohamed, A.; Hashim, N.; Isa, I.M.: Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. J. Encapsul. Adsorpt. Sci. 04, 25–35 (2014). https://doi.org/10.4236/jeas.2014.41004

    Article  Google Scholar 

  47. Areco, M.M.; dos Santos Afonso, M.: Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids Surf. B Biointerfaces 81, 620–628 (2010). https://doi.org/10.1016/j.colsurfb.2010.08.014

    Article  Google Scholar 

  48. O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F.: Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour. Technol. 99, 6709–6724 (2008). https://doi.org/10.1016/j.biortech.2008.01.036

    Article  Google Scholar 

  49. Al-Ghouti, M.A.; Li, J.; Salamh, Y.; Al-Laqtah, N.; Walker, G.; Ahmad, M.N.M.: Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 176, 510–520 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.059

    Article  Google Scholar 

  50. Al-Ghouti, M.A.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N.: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manag. 69, 229–238 (2003). https://doi.org/10.1016/j.jenvman.2003.09.005

    Article  Google Scholar 

  51. Pathania, D.; Sharma, S.; Singh, P.: Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 10, S1445–S1451 (2017). https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  Google Scholar 

  52. Latif, M.M.A.E.; Ibrahim, A.M.: Adsorption, kinetic and equilibrium studies on removal of basic dye from aqueous solutions using hydrolyzed Oak sawdust. Desalin. Water Treat. 6, 252–268 (2009). https://doi.org/10.5004/dwt.2009.501

    Article  Google Scholar 

  53. Pehlivan, E.; Yanık, B.H.; Ahmetli, G.; Pehlivan, M.: Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour. Technol. 99, 3520–3527 (2008). https://doi.org/10.1016/j.biortech.2007.07.052

    Article  Google Scholar 

  54. Uzunoğlu, D.; Gürel, N.; Özkaya, N.; Özer, A.: The single batch biosorption of copper(II) ions on Sargassum acinarum. Desalin. Water Treat. 52, 1514–1523 (2014). https://doi.org/10.1080/19443994.2013.789403

    Article  Google Scholar 

  55. Ofomaja, A.E.; Ho, Y.-S.: Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigments 74, 60–66 (2007). https://doi.org/10.1016/j.dyepig.2006.01.014

    Article  Google Scholar 

  56. Huang, X.-Y.; Mao, X.-Y.; Bu, H.-T.; Yu, X.-Y.; Jiang, G.-B.; Zeng, M.-H.: Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydr. Res. 346, 1232–1240 (2011). https://doi.org/10.1016/j.carres.2011.04.012

    Article  Google Scholar 

  57. Barka, N.; Qourzal, S.; Assabbane, A.; Nounah, A.; Ait-Ichou, Y.: Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapatite. J. Saudi Chem. Soc. 15, 263–267 (2011). https://doi.org/10.1016/j.jscs.2010.10.002

    Article  Google Scholar 

  58. Foo, K.Y.; Hameed, B.H.: Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresour. Technol. 104, 679–686 (2012). https://doi.org/10.1016/j.biortech.2011.10.005

    Article  Google Scholar 

  59. Malik, P.K.: Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigments 56, 239–249 (2003). https://doi.org/10.1016/S0143-7208(02)00159-6

    Article  Google Scholar 

  60. Günay, A.; Arslankaya, E.; Tosun, İ.: Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater. 146, 362–371 (2007). https://doi.org/10.1016/j.jhazmat.2006.12.034

    Article  Google Scholar 

  61. Kumar, P.S.; Ramakrishnan, K.; Gayathri, R.: Removal of nickel(II) from aqueous solutions by ceralite IR 120 cationic exchange resins. J. Eng. Sci. Technol. 5, 232–243 (2010)

    Google Scholar 

  62. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  63. Ayawei, N.; Ekubo, A.T.; Wankasi, D.; Dikio, E.D.: Adsorption of congo red by Ni/Al–CO3: equilibrium, thermodynamic and kinetic studies. Orient. J. Chem. 31, 1307–1318 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The project was financially supported by Vice Deanship of Research Chairs, King Saud University, Riyadh. Authors would also like to thank RSSU at King Saud University for their editing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Amin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, M.T., Alazba, A.A. & Shafiq, M. Comparative Sorption of Nickel from an Aqueous Solution Using Biochar Derived from Banana and Orange Peel Using a Batch System: Kinetic and Isotherm Models. Arab J Sci Eng 44, 10105–10116 (2019). https://doi.org/10.1007/s13369-019-03907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03907-6

Keywords

Navigation