Skip to main content
Log in

Experimental Investigation and Modeling of Surface Finish in Argon-Assisted Electrical Discharge Machining Using Dimensional Analysis

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigates the use of argon gas-assisted electrical discharge machining (AGAEDM) of high carbon high chromium die steel. Compressed argon gas in die-sinking EDM under controlled conditions was used to evaluate the surface roughness (SR). The influence of process parameters, viz., discharge current, pulse-on time, duty cycle, tool rotation, and discharge gas pressure, on SR has been investigated as well. Analysis of variance was applied to determine the significant factors affecting SR. In the course of this investigation, a semi-empirical model has been developed to determine SR through dimensional analysis while applying the AGAEDM process. The experimental and predicted values, gathered through the semi-empirical model, have been found to be in accord with each other. The mean error between the predicted and the experimental values was less than 5%. A comparison was performed between the RSM and semi-empirical models. The semi-empirical model was found to predict responses most precisely as compared to RSM model. In this connection, surface morphology analysis has also been done by using a scanning electron microscope in the machined specimens. The energy-dispersive X-ray and X-ray diffraction examination were used to study the relocation of different elements and development of compounds on the surface of the machined specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ho, K.; Newman, S.: State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43, 1287–1300 (2003)

    Article  Google Scholar 

  2. Singh, N.K.; Pandey, P.M.; Singh, K.K.; Sharma, M.K.: Steps towards green manufacturing through EDM process: a review. Cogent Eng. 3, 1272662 (2016). 2016/12/31

    Google Scholar 

  3. Mohan, B.; Rajadurai, A.; Satyanarayana, K.G.: Effect of SiC and rotation of electrode on electric discharge machining of Al–SiC composite. J. Mater. Process. Technol. 124, 297–304 (2002). 2002/06/20/

    Article  Google Scholar 

  4. Kuppan, P.; Rajadurai, A.; Narayanan, S.: Influence of EDM process parameters in deep hole drilling of Inconel 718. Int. J. Adv. Manuf. Technol. 38, 74–84 (2007)

    Article  Google Scholar 

  5. Teimouri, R.; Baseri, H.: Effects of magnetic field and rotary tool on EDM performance. J. Manuf. Process. 14, 316–322 (2012). 2012/08/01/

    Article  Google Scholar 

  6. Abdulkareem, S.; Khan, A.A.; Konneh, M.: Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining. Int. J. Adv. Manuf. Technol. 45, 1146–1151 (2009)

    Article  Google Scholar 

  7. Srivastava, V.; Pandey, P.M.: Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode. J. Manuf. Process. 14, 393–402 (2012). 2012/08/01/

    Article  Google Scholar 

  8. Aliakbari, E.; Baseri, H.: Optimization of machining parameters in rotary EDM process by using the Taguchi method. Int. J. Adv. Manuf. Technol. 62, 1041–1053 (2012)

    Article  Google Scholar 

  9. Gu, L.; Li, L.; Zhao, W.; Rajurkar, K.P.: Electrical discharge machining of Ti6Al4V with a bundled electrode. Int. J. Mach. Tools Manuf. 53, 100–106 (2012). 2012/02/01/

    Article  Google Scholar 

  10. Yoshida, M.; Ishii, Y.; Ueda, T.: Study on electrical discharge machining for cemented carbide with non-flammable dielectric liquid: influence of form of oxygen supplied to dielectric liquid on machining. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 232, 568–577 (2017). 2018/03/01

    Article  Google Scholar 

  11. Singh, N.K.; Pandey, P.M.; Singh, K.K.: EDM with an air-assisted multi-hole rotating tool. Mater. Manuf. Process. 31, 1872–1878 (2016). 2016/10/25

    Article  Google Scholar 

  12. Tsai, K.-M.; Wang, P.-J.: Semi-empirical model of surface finish on electrical discharge machining. Int. J. Mach. Tools Manuf. 41, 1455–1477 (2001). 2001/08/01/

    Article  Google Scholar 

  13. Yahya, A.; Manning, C.D.: Determination of material removal rate of an electro-discharge machine using dimensional analysis. J. Phys. D Appl. Phys. 37, 1467 (2004)

    Article  Google Scholar 

  14. Kumar, J.; Khamba, J.S.: Modeling the material removal rate in ultrasonic machining of titanium using dimensional analysis. Int. J. Adv. Manuf. Technol. 48, 103–119 (2009)

    Article  Google Scholar 

  15. Patil, N.G.; Brahmankar, P.K.: Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis. Int. J. Adv. Manuf. Technol. 51, 599–610 (2010)

    Article  Google Scholar 

  16. Yahya, A.; Trias, A.; Erawan, M.A.; Nor Hisham, K.; Khalil, K.; Rahim, M.A.A.: Comparison studies of electrical discharge machining (EDM) process model for low gap current. Adv. Mater. Res. 433–440, 650–654 (2012)

    Article  Google Scholar 

  17. Dave, H.K.; Desai, K.P.; Raval, H.K.: Development of semi empirical model for predicting material removal rate during orbital electro discharge machining of Inconel 718. Int. J. Mach. Mach. Mater. 13, 215–230 (2013)

    Google Scholar 

  18. Kumar, A.; Kumar, V.; Kumar, J.: Semi-empirical model on MRR and overcut in WEDM process of pure titanium using multi-objective desirability approach. J. Braz. Soc. Mech. Sci. Eng. 37, 689–721 (2014)

    Article  Google Scholar 

  19. Bobbili, R.; Madhu, V.; Gogia, A.K.: Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials. Eng. Sci. Technol. Int. J. 18, 664–668 (2015). 2015/12/01/

    Article  Google Scholar 

  20. Kumar, S.; Singh, R.; Batish, A.; Singh, T.P.: Modeling the tool wear rate in powder mixed electro-discharge machining of titanium alloys using dimensional analysis of cryogenically treated electrodes and workpiece. Proc. Inst. Mech. Eng. E J. Process Mech. Eng. 231, 271–282 (2015). 2017/04/01

    Article  Google Scholar 

  21. Kumar, S.; Batish, A.; Singh, R.; Singh, T.P.: A mathematical model to predict material removal rate during electric discharge machining of cryogenically treated titanium alloys. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229, 214–228 (2015)

    Article  Google Scholar 

  22. Mamalis, A.G.; Vosniakos, G.C.; Vaxevanidis, N.M.; Prohászka, J.: Macroscopic and microscopic phenomena of electro-discharge machined steel surfaces: an experimental investigation. J. Mech. Work. Technol. 15, 335–356 (1987). 1987/12/01/

    Article  Google Scholar 

  23. Sonin, A.A.: “Dimensional analysis,” Technical report, Massachusetts Institute of Technology (2001)

  24. Srivastava, V.; Pandey, P.M.: Experimental investigation on electrical discharge machining process with ultrasonic-assisted cryogenically cooled electrode. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 227, 301–314 (2013). 2013/02/01

    Article  Google Scholar 

  25. Patel, K.; Pandey, P.M.; Rao, P.V.: Study on machinability of Al2O3 ceramic composite in EDM using response surface methodology. J. Eng. Mater. Technol. 133, 021004 (2011)

    Article  Google Scholar 

  26. Singh, N.K.; Pandey, P.M.; Singh, K.K.: Experimental investigations into the performance of EDM using argon gas-assisted perforated electrodes. Mater. Manuf. Process. 32, 940–951 (2017). 2017/07/04

    Article  Google Scholar 

  27. Chattopadhyay, K.; Verma, S.; Satsangi, P.; Sharma, P.: Development of empirical model for different process parameters during rotary electrical discharge machining of copper-steel (EN-8) system. J. Mater. Process. Technol. 209, 1454–1465 (2009)

    Article  Google Scholar 

  28. Srivastava, V.; Pandey, P.M.: Statistical modeling and material removal mechanism of electrical discharge machining process with cryogenically cooled electrode. Proc. Mater. Sci. 5, 2004–2013 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N.K., Singh, Y. Experimental Investigation and Modeling of Surface Finish in Argon-Assisted Electrical Discharge Machining Using Dimensional Analysis. Arab J Sci Eng 44, 5839–5850 (2019). https://doi.org/10.1007/s13369-019-03738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03738-5

Keywords

Navigation