Skip to main content
Log in

Physical, Rheological and Stability Properties of Desulfurized Rubber Asphalt and Crumb Rubber Asphalt

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate binder characterization of the desulfurized rubber asphalt (DRA) and crumb rubber asphalt (CRA) with different contents and compare those materials with available virgin asphalt (VA). The effects of desulfurized rubber and regular rubber on VA were investigated from the physical, rheological and stability properties point of view. The results indicated that DRA had the similar physical and rheological performances with CRA, but DRA was much better in improving storage property. The desulfurized rubber could integrate into asphalt to perform both chemical reaction and physical swelling while crumb rubber mainly dispersed incompatibly in asphalt. The chemical fusion in DRA could provide much better rutting resistance and stability performance in high temperature and increase the low-temperature performance. Although the asphalt characterization was enhanced with increasing rubber contents, excessive rubber addition could not get much better performance improvement. It was recommended that 15–20% desulfurized rubber content was optimum for designing asphalt rubber mixture to acquire improved performance and long storage stability. Overall, the long storage of DRA would provide asphalt rubber technology a much wider range of service and adaption in the road field construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, Y.; Roque, R.; Cocconcelli, C.; Bekoe, M.; Lopp, G.: Evaluation of cracking performance for polymer modified asphalt mixtures with high RAP content. Road Mater. Pavement Des. 18(Suppl. 1), 450–470 (2017). https://doi.org/10.1080/14680629.2016.1266774

    Article  Google Scholar 

  2. Behroozikhah, A.; Morafa, S.H.; Aflaki, S.: Investigation of fatigue cracks on RAP mixtures containing Sasobit and crumb rubber based on fracture energy. Constr. Build. Mater. 141, 526–532 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.011

    Article  Google Scholar 

  3. Visser, A.T.: Potential of South African road technology for application in China. J. Traffic Transp. Eng. (English Edition) 4(2), 113–117 (2017). https://doi.org/10.1016/j.jtte.2017.03.004

    Article  Google Scholar 

  4. Shirzad, S.; Aguirre, M.A.; Bonilla, L.; et al.: Mechanistic-empirical pavement performance of asphalt mixtures with recycled asphalt shingles. Constr. Build. Mater. 160, 687–697 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.114

    Article  Google Scholar 

  5. Celauro, C.; Bernardo, C.; Gabriele, B.: Production of innovative, recycled and high performance asphalt for road pavements. Resour. Conserv. Recycl. 54, 337–47 (2010). https://doi.org/10.1016/j.resconrec.2009.08.009

    Article  Google Scholar 

  6. Diab, A.; You, Z.: Small and large strain rheological characterizations of polymer-and crumb rubber-modified asphalt binders. Constr. Build. Mater. 144, 168–177 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.175

    Article  Google Scholar 

  7. Sheng, Y.; Li, H.; Geng, J.; Tian, Y.; Li, Z.; Xiong, R.: Production and performance of desulfurized rubber asphalt binder. Int. J. Pavement Res. Technol. 10, 262–273 (2017). https://doi.org/10.1016/j.ijprt.2017.02.002. (Cross Ref)

    Article  Google Scholar 

  8. Zhang, F.; Hu, C.: The research for crumb rubber/waste plastic compound modified asphalt. J. Therm. Anal. Calorim. 124(2), 729–741 (2016). https://doi.org/10.1007/s10973-015-5198-4

    Article  Google Scholar 

  9. Ghavibazoo, A.; Abdelrahman, M.: Effect of crumb rubber modification on short term aging susceptibility of asphalt binder. Int. J. Pavement Res. Technol. 7(4), 297–304 (2014). https://doi.org/10.6135/ijprt.org.tw/2014.7(4).297

    Google Scholar 

  10. Wu, X.; Wang, S.; Dong, R.: Lightly pyrolyzed tire rubber used as potential asphalt alternative. Constr. Build. Mater. 112, 623–628 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.208

    Article  Google Scholar 

  11. Liang, M.; Xin, X.; Fan, W.; et al.: Viscous properties, storage stability and their relationships with microstructure of tire scrap rubber modified asphalt. Constr. Build. Mater. 74, 124–131 (2015). https://doi.org/10.1016/j.conbuildmat.2014.10.015

    Article  Google Scholar 

  12. Geng, J.; Li, H.; Sheng, Y.: Changing regularity of SBS in the aging process of polymer modified asphalt binder based on GPC analysis. Int. J. Pavement Res. Technol. 7(1), 77–82 (2014). https://doi.org/10.6135/ijprt.org.tw/2014.7(1).77

    Google Scholar 

  13. Gibreil, H.A.A.; Feng, C.P.: Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt. Constr. Build. Mater. 142, 101–108 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.062

    Article  Google Scholar 

  14. Ge, D.; Yan, K.; You, Z.; Xu, H.: Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Constr. Build. Mater. 126, 66–76 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.014

    Article  Google Scholar 

  15. Fakhri, M.; Amoosoltani, E.: The effect of reclaimed asphalt pavement and crumb rubber on mechanical properties of roller compacted concrete pavement. Constr. Build. Mater. 137, 470–484 (2017). https://doi.org/10.1016/j.conbuildmat.2017.01.136

    Article  Google Scholar 

  16. Kök, B.V.; Çolak, H.: Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Constr. Build. Mater. 25(8), 3204–3212 (2011). https://doi.org/10.1016/j.conbuildmat.2011.03.005

    Article  Google Scholar 

  17. Sugiyanto, G.: Characterization of asphalt concrete produced from scrapped tire rubber. Eng. J. 21(4) (2017). https://doi.org/10.4186/ej.2017.21.4.193

  18. Ni, Y.; Liao, M.Y.; Li, X.: Preparation process and properties of crumb rubber modified asphalt. Acta Scientiarum Naturalium Universitatis Sunyatseni 44, 33–35 (2005)

    Google Scholar 

  19. Yildirim, Y.: Polymer modified asphalt binders. Constr. Build. Mater. 21(1), 66–72 (2007). https://doi.org/10.1016/j.conbuildmat.2005.07.007

    Article  Google Scholar 

  20. Fu, Z.; Dang, Y.; Guo, B.; et al.: Laboratory investigation on the properties of asphalt mixtures modified with double-adding admixtures and sensitivity analysis. J. Traffic Transp. Eng. (English Edition) 3(5), 412–426 (2016). https://doi.org/10.1016/j.jtte.2016.09.002

    Article  Google Scholar 

  21. Ding, X.; Ma, T.; Zhang, W.; et al.: Experimental study of stable crumb rubber asphalt and asphalt mixture. Constr. Build. Mater. 157, 975–981 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.164

    Article  Google Scholar 

  22. Lee, S.J.; Akisetty, C.K.; Amirkhanian, S.N.: The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements. Constr. Build. Mater. 22(7), 1368–1376 (2008). https://doi.org/10.1016/j.conbuildmat.2007.04.010

    Article  Google Scholar 

  23. Richardson, A.E.; Coventry, K.A.; Ward, G.: Freeze/thaw protection of concrete with optimum rubber crumb content. J. Clean. Prod. 23(1), 96–103 (2012). https://doi.org/10.1016/j.jclepro.2011.10.013

    Article  Google Scholar 

  24. Wen, Y.; Wang, Y.; Zhao, K.; et al.: The engineering, economic, and environmental performance of terminal blend rubberized asphalt binders with wax-based warm mix additives. J. Clean. Prod. 184, 985–1001 (2018). https://doi.org/10.1016/j.jclepro.2018.03.011

    Article  Google Scholar 

  25. Kataware, A.V.; Singh, D.: Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, superpave PG, rutting and fatigue performance. Constr. Build. Mater. 146, 436–444 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.043

    Article  Google Scholar 

  26. Dias, J.L.F.; Picado-Santos, L.G.; Capitão, S.D.: Mechanical performance of dry process fine crumb rubber asphalt mixtures placed on the Portuguese road network. Constr. Build. Mater. 73, 247–254 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.110

    Article  Google Scholar 

  27. Ma, T.; Zhao, Y.; Huang, X.; et al.: Characteristics of desulfurized rubber asphalt and mixture. Ksce J. Civ. Eng. 20(4), 1347–1355 (2016). https://doi.org/10.1007/s12205-015-1195-1

    Article  Google Scholar 

  28. Way, G.B.; Kaloush, K.E.; Biligiri, K.P.: Asphalt-Rubber Standard Practice Guide, 2nd edn., Prepared for the Rubber Pavements Association, USA. http://www.rubberpavements.org/Library_Information AR_Std_Practice_Guide_20111221.pdf (2012). Aaccessed 27 March 2018

  29. Bahia, H U.; Davies, R.: Factors controlling the effect of crumb rubber on critical properties of asphalt binders. J. Assoc. Asphalt Paving Technol. 64. http://worldcat.org/issn/02702932(1995). Accessed on 27 March 2018

  30. Dantasneto, S.; Farias, M.; Pais, J.; et al.: Influence of crumb rubber and digestion time on the asphalt rubber binders. Road Mater. Pavement Des. 7(2), 131–148 (2006). https://doi.org/10.1080/14680629.2006.9690030

    Article  Google Scholar 

  31. Lee, S.J.: Effects of reaction time on physical and chemical properties of rubber modified binders. Doctoral dissertation, Clemson University. https://www.researchgate.netpublication/242360812_Effects_of_Reaction_Time_on_Physical_and_Chemical_Properties_of_Rubber-modified_Binders (2006). Accessed on 30 March 2018

  32. Sun, D.Q.; Li, L.H.: Factors affecting the viscosity of crumb rubberâ modified asphalt. Liquid Fuels Technol. 28(15), 1555–1566 (2010). https://doi.org/10.1080/10916466.2010.497007

    Google Scholar 

  33. Ghavibazoo, A.; Abdelrahman, M.: Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binder. Int. J. Pavement Eng. 14(5), 517–530 (2013). https://doi.org/10.1080/10298436.2012.721548

    Article  Google Scholar 

  34. Standard test methods of bitumen and bituminous mixtures for highway engineering (JTG E20-2011). China Communications Press, China (2011)

  35. Jia, X.; Huang, B.; Bowers, B.F.; et al.: Infrared spectra and rheological properties of asphalt cement containing waste engine oil residues. Constr. Build. Mater. 50(1), 683–691 (2014). https://doi.org/10.1016/j.conbuildmat.2013.10.012

    Article  Google Scholar 

Download references

Acknowledgments

The projectwas supported by the Shaanxi Science and Technology Project (No. 2018SF-364) and the Qinghai Transportation Science and Technology Project (No. 2017-ZJ-763), the Fundamental Research Funds for the Central Universities of China (Nos. 310831153409, 300102218502 and 300102318401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Dong, B., Zhao, D. et al. Physical, Rheological and Stability Properties of Desulfurized Rubber Asphalt and Crumb Rubber Asphalt. Arab J Sci Eng 44, 5043–5056 (2019). https://doi.org/10.1007/s13369-018-3684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3684-2

Keywords

Navigation