Skip to main content
Log in

Heterogeneous Fenton Oxidation of Caffeine Using Zeolite-Supported Iron Nanoparticles

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current study aimed at exploring the potential of iron-embedded zeolites to serve as heterogeneous Fenton catalyst for the treatment of caffeine. Synthetic zeolites were modified through co-precipitation and subsequent deposition of iron precipitates on the zeolites. Catalyst was characterized through chemical composition, particle size and its distribution, BET specific surface area, FTIR, and XRD techniques. Batch mode studies were carried out, and process parameters including pH, contact time, and iron to hydrogen peroxide ratio (\(\hbox {Fe}^{+2}\):\(\hbox {H}_{2}\hbox {O}_{2})\) were optimized. Response surface methodology was employed for this purpose using Design Expert 10.0 software. \(\hbox {Fe}^{+2}\):\(\hbox {H}_{2}\hbox {O}_{2}\) ratio was found to be the most important parameter affecting the removal of caffeine. Significant interaction between pH and \(\text {Fe}^{+2}\):\(\hbox {H}_{2}\hbox {O}_{2}\) ratio was also observed. More than 80% removal of caffeine was achieved when the pH was in the range of 5.8–7 and \(\text {Fe}^{+2}\):\(\hbox {H}_{2}\hbox {O}_{2}\) ratio in the range of 2.5–3. Catalyst was found stable, and negligible loss of iron under experimental conditions was observed. Moreover, the catalyst could be reused for at least three successive runs of treatment without significant loss in the activity of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis, J.B.: Assessing sources and impacts of priority PPCP compounds in urban receiving waters. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK (2008)

  2. Owens, B.: Pharmaceuticals in the environment: a growing problem. https://www.pharmaceutical-journal.com/news-and-analysis/features/pharmaceuticals-in-the-environment-agrowing-problem/20067898.article (2015). Accessed 25 Feb 2018

  3. Reiner, J.; Berset, J.; Kannan, K.: Mass flow of polycyclic musks in two wastewater treatment plants. Arch. Environ. Contam. Toxicol. 52(4), 451–457 (2007)

    Article  Google Scholar 

  4. Sui, Q.; Cao, X.; Lu, S.; Zhao, W.; Qiu, Z.; Yu, G.: Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg. Contam. 1(1), 14–24 (2015)

    Article  Google Scholar 

  5. Wang, J.; Wang, S.: Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J. Environ. Manag. 182, 620–640 (2016)

    Article  Google Scholar 

  6. Bolong, N.; Ismail, A.; Salim, M.R.; Matsuura, T.: A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239(1–3), 229–246 (2009)

    Article  Google Scholar 

  7. Boxall, A.B.; Rudd, M.A.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T.: Pharmaceuticals and personal care products in the environment: what are the big questions? Environ. Health Perspect. 120(9), 1221 (2012)

    Article  Google Scholar 

  8. Brooks, B.W.; Huggett, D.B.; Boxall, A.: Pharmaceuticals and personal care products: research needs for the next decade. Environ. Toxicol. Chem. 28(12), 2469–2472 (2009)

    Article  Google Scholar 

  9. Daughton, C.G.: Pharmaceuticals and the environment (PiE): evolution and impact of the published literature revealed by bibliometric analysis. Sci. Total Environ. 562, 391–426 (2016)

    Article  Google Scholar 

  10. Kümmerer, K.: Antibiotics in the aquatic environment—a review-part I. Chemosphere 75(4), 417–434 (2009)

    Article  Google Scholar 

  11. Murdoch, K.: Pharmaceutical pollution in the environment: issues for Australia, New Zealand and Pacific island countries. Natl. Toxic Netw. 22, 1–36 (2015)

    Google Scholar 

  12. Buerge, I.J.; Poiger, T.; Müller, M.D.; Buser, H.-R.: Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ. Sci. Technol. 37(4), 691–700 (2003)

    Article  Google Scholar 

  13. Edwards, Q.A.; Kulikov, S.M.; Garner-O’Neale, L.D.: Caffeine in surface and wastewaters in Barbados, West Indies. SpringerPlus 4(1), 57 (2015)

    Article  Google Scholar 

  14. Knee, K.L.; Gossett, R.; Boehm, A.B.; Paytan, A.: Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kauai (Hawaii, USA). Mar. Pollut. Bull. 60(8), 1376–1382 (2010)

    Article  Google Scholar 

  15. Maryam Saad, D.F.S.; Khan, W.; Ijaz, A.; Qasim, M.; Hafeez, A.; Khan, A.; Baig, S.A.; Ahmed, N.: Occurrence of selected pesticides and PCPs in surface water receiving untreated discharge in Pakistan. J. Environ. Anal. Toxicol. 7(5), 500 (2017)

    Google Scholar 

  16. Bruton, T.; Alboloushi, A.; de la Garza, B.; Kim, B.-O.; Halden, R.U.: Fate of caffeine in the environment and ecotoxicological considerations. In: Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations, vol. 1048. ACS Symposium Series, vol. 1048, pp. 257–273. American Chemical Society (2010)

  17. Halden, R.U. (ed.): Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations. American Chemical Society, Washington (2010)

    Google Scholar 

  18. Potera, C.: Caffeine in wastewater is a tracer for human fecal contamination. Environ. Health Perspect. 120(3), a108 (2012)

    Article  Google Scholar 

  19. Stamatis, N.K.; Konstantinou, I.K.: Occurrence and removal of emerging pharmaceutical, personal care compounds and caffeine tracer in municipal sewage treatment plant in Western Greece. J. Environ. Sci. Health Part B 48(9), 800–813 (2013)

    Article  Google Scholar 

  20. Sui, Q.; Huang, J.; Deng, S.; Yu, G.; Fan, Q.: Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 44(2), 417–426 (2010)

    Article  Google Scholar 

  21. del Rey, Z.R.; Granek, E.F.; Sylvester, S.: Occurrence and concentration of caffeine in Oregon coastal waters. Mar. Pollut. Bull. 64(7), 1417–1424 (2012)

    Article  Google Scholar 

  22. Martín, J.; Camacho-Muñoz, D.; Santos, J.; Aparicio, I.; Alonso, E.: Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J. Hazard. Mater. 239, 40–47 (2012)

    Article  Google Scholar 

  23. Al Qarni, H.; Collier, P.; O’Keeffe, J.; Akunna, J.: Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. Environ. Sci. Pollut. Res. 23(13), 13003–13014 (2016)

    Article  Google Scholar 

  24. Zhou, H.; Wu, C.; Huang, X.; Gao, M.; Wen, X.; Tsuno, H.; Tanaka, H.: Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China. Water Environ. Res. 82(11), 2239–2248 (2010)

    Article  Google Scholar 

  25. Moore, M.T.; Greenway, S.L.; Farris, J.L.; Guerra, B.: Assessing caffeine as an emerging environmental concern using conventional approaches. Arch. Environ. Contam. Toxicol. 54(1), 31–35 (2008)

    Article  Google Scholar 

  26. Dafouz, R.; Cáceres, N.; Rodríguez-Gil, J.L.; Mastroianni, N.; de Alda, M.L.; Barceló, D.; de Miguel, Á.G.; Valcárcel, Y.: Does the presence of caffeine in the marine environment represent an environmental risk? A regional and global study. Sci. Total Environ. 615, 632–642 (2018)

    Article  Google Scholar 

  27. Rey, Z.R.: Occurence and concentrations of caffeine in saewater from the Oregon coast and potential effects on dominant Mussel, Mytilus calfornians. M.Sc. Thesis. Portland State University (2010)

  28. Ladu, F.; Mwaffo, V.; Li, J.; Macrì, S.; Porfiri, M.: Acute caffeine administration affects zebrafish response to a robotic stimulus. Behav. Brain Res. 289, 48–54 (2015)

    Article  Google Scholar 

  29. Barone, R.; Nanna, M.P.; Patullo, C.: Effects of exposure to caffeine on the swimming behavior of the fathead minnow. Whalen Symposium Abstract (2017)

  30. Al-Farsi, R.S.; Ahmed, M.; Al-Busaidi, A.; Choudri, B.: Translocation of pharmaceuticals and personal care products. (PPCPs) into plant tissues: a review. Emerg. Contam. 3(4), 132–137 (2018)

  31. Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J.: Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review. Sci. Total Environ. 536, 655–666 (2015)

    Article  Google Scholar 

  32. Wang, J.; Gardinali, P.R.: Uptake and depuration of pharmaceuticals in reclaimed water by mosquito fish (Gambusia holbrooki): a worst-case, multiple-exposure scenario. Environ. Toxicol. Chem. 32(8), 1752–1758 (2013)

    Article  Google Scholar 

  33. Grandclement, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P.: From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res. 111, 297–317 (2017)

    Article  Google Scholar 

  34. Roth, O.: Evaluating the effectiveness of three Utah wastewater treatment facilities in removing pharmaceuticals and personal care products. Msc Thesis, Utah State University (2012)

  35. Commission, E.: Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 226, 1–17 (2013)

    Google Scholar 

  36. Ebrahiem, E.E.; Al-Maghrabi, M.N.; Mobarki, A.R.: Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem. 10, S1674–S1679 (2017)

    Article  Google Scholar 

  37. Oliveira, T.D.D.; Martini, W.S.; Santos, M.D.; Matos, M.A.C.; Rocha, L.L.D.: Caffeine oxidation in water by Fenton and Fenton-like processes: effects of inorganic anions and ecotoxicological evaluation on aquatic organisms. J. Braz. Chem. Soc. 26(1), 178–184 (2015)

    Google Scholar 

  38. Meng, X.; Yan, S.; Wu, W.; Zheng, G.; Zhou, L.: Heterogeneous Fenton-like degradation of phenanthrene catalyzed by schwertmannite biosynthesized using Acidithiobacillus ferrooxidans. RSC Adv. 7(35), 21638–21648 (2017)

    Article  Google Scholar 

  39. Trovó, A.G.; Silva, T.F.; Gomes, O.; Machado, A.E.; Neto, W.B.; Muller, P.S.; Daniel, D.: Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design. Chemosphere 90(2), 170–175 (2013)

    Article  Google Scholar 

  40. Klamerth, N.; Malato, S.; Maldonado, M.; Aguera, A.; Fernández-Alba, A.: Application of photo-fenton as a tertiary treatment of emerging contaminants in municipal wastewater. Environ. Sci. Technol. 44(5), 1792–1798 (2010)

    Article  Google Scholar 

  41. Trovó, A.G.; Silva, T.F.; Gomes Jr., O.; Machado, A.E.; Neto, W.B.; Muller Jr., P.S.; Daniel, D.: Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design. Chemosphere 90(2), 170–175 (2013)

    Article  Google Scholar 

  42. Yamal-Turbay, E.; Graells, Ms; Pérez-Moya, M.: Systematic assessment of the influence of hydrogen peroxide dosage on caffeine degradation by the photo-Fenton process. Ind. Eng. Chem. Res. 51(13), 4770–4778 (2012)

    Article  Google Scholar 

  43. Rodríguez-Gil, J.L.; Catalá, M.; Alonso, S.G.; Maroto, R.R.; Valcárcel, Y.; Segura, Y.; Molina, R.; Melero, J.A.; Martínez, F.: Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere 80(4), 381–388 (2010)

    Article  Google Scholar 

  44. Ganzenko, O.; Oturan, N.; Huguenot, D.; Van Hullebusch, E.D.; Esposito, G.; Oturan, M.A.: Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: effects of operating parameters on removal efficiency. Sep. Purif. Technol. 156, 987–995 (2015)

    Article  Google Scholar 

  45. Klavarioti, M.; Mantzavinos, D.; Kassinos, D.: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35(2), 402–417 (2009)

    Article  Google Scholar 

  46. Bernabeu, A.; Vercher, R.; Santos-Juanes, L.; Simón, P.; Lardín, C.; Martínez, M.; Vicente, J.; González, R.; Llosá, C.; Arques, A.: Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catal. Today 161(1), 235–240 (2011)

    Article  Google Scholar 

  47. Gonzalez-Olmos, R.; Kopinke, F.-D.; Mackenzie, K.; Georgi, A.: Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation. Environ. Sci. Technol. 47(5), 2353–2360 (2013)

    Article  Google Scholar 

  48. Ünnü, B.A.; Gündüz, G.; Dükkancı, M.: Heterogeneous Fenton-like oxidation of crystal violet using an iron loaded ZSM-5 zeolite. Desalin. Water Treat. 57(25), 11835–11849 (2016)

    Article  Google Scholar 

  49. Kim, K.S.; Park, J.O.; Nam, S.C.: Synthesis of iron-loaded zeolites for removal of ammonium and phosphate from aqueous solutions. Environ. Eng. Res. 18(4), 267–276 (2013)

    Article  Google Scholar 

  50. Qi, F.; Chu, W.; Xu, B.: Modeling the heterogeneous peroxymonosulfate/Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources. Chem. Eng. J. 235, 10–18 (2014)

    Article  Google Scholar 

  51. Guo, Y.; Shen, T.; Wang, C.; Sun, J.; Wang, X.: Rapid removal of caffeine in aqueous solutions by peroxymonosulfate oxidant activated with cobalt ion. Water Air Soil Pollut. 72(3), 478–483 (2015)

    Google Scholar 

  52. Ranga, S.; Jaimini, M.; Sharma, S.K.; Chauhan, B.S.; Kumar, A.: A review on design of experiments (DOE). Int. J. Pharm. Chem. Sci. 3(1), 216–224 (2014)

    Google Scholar 

  53. Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M.: Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta 21(4), 314–318 (1974)

    Article  Google Scholar 

  54. Jacqueline George, S.; Gandhimathi, R.; Nidheesh, P.V.; Ramesh, S.T.: Optimization of salicylic acid removal by electro Fenton process in a continuous stirred tank reactor using response surface methodology. Desalin. Water Treat. 57(9), 4234–4244 (2016)

    Article  Google Scholar 

  55. Louhichi, B.; Bensalah, N.: Comparative study of the treatment of printing ink wastewater by conductive-diamond electrochemical oxidation, Fenton process, and ozonation. Environ. Res. 24(1), 49–58 (2014)

    Google Scholar 

  56. Canizares, P.; Paz, R.; Sáez, C.; Rodrigo, M.A.: Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J. Environ. Manag. 90(1), 410–420 (2009)

    Article  Google Scholar 

Download references

Funding

This research was funded by University of Engineering and Technology, Lahore, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehwish Anis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anis, M., Haydar, S. Heterogeneous Fenton Oxidation of Caffeine Using Zeolite-Supported Iron Nanoparticles. Arab J Sci Eng 44, 315–328 (2019). https://doi.org/10.1007/s13369-018-3659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3659-3

Keywords

Navigation