Skip to main content
Log in

Effect of First and Second Passes on Microstructure and Wear Properties of Titanium Dioxide-Reinforced Aluminum Surface Composite via Friction Stir Processing

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The dispersion of particles in polymer, ceramic and metal matrix composites via conventional routes was very difficult, due to agglomeration/clustering of particles, poor compatibility of properties of particle and matrix. So, an attempt has been made to uniformly disperse the titanium dioxide particles on the surface of aluminum matrix via two-pass friction stir processing. The effect of passes on particle distribution, microstructure, microhardness and wear properties was systematically investigated. Microstructural studies revealed a fine equiaxed grain structure in the stir zone due to the dynamic recrystallization. The first-pass surface composite sample results in agglomeration of particles toward the advancing side due to insufficient materials flow and strain. The second pass was carried out by changing advancing and retreating side of composite plate processed by the first pass. The results showed that marginal change in grain size was observed with homogeneous microstructure when compared to first-pass surface composite. Microhardness was carried out across the cross sections of the surface composites to obtain hardness profile. The tribological performance was assessed using a pin-on-disk tribometer. The result reveals that surface composites processed by the second pass show better hardness and wear resistance when compared to as-received aluminum. The wear mechanism shows a transition from adhesive wear in surface composites to the combination of abrasive and delamination wear in as-received aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Templesmith, P.; Dawes, C.J.: Improvements to friction welding. GB Patent Application 9125978.8, 1991

  2. Mishra, R.S.; Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R 50, 1–78 (2005)

    Article  Google Scholar 

  3. Li, J.Q.; Liu, H.J.: Effects of welding speed on microstructures and mechanical properties of AA2219-T6 welded by the reverse dual-rotation friction stir welding. Int. J. Adv. Manuf. Technol. 68, 2071–2083 (2013)

    Article  Google Scholar 

  4. Shen, J.J.; Liu, H.J.; Cui, F.: Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater. Des. 31, 3937–3942 (2010)

    Article  Google Scholar 

  5. Zhou, L.; Liu, H.J.; Liu, Q.W.: Effect of rotation speed on microstructure and mechanical properties of Ti–6Al–4V friction stir welded joints. Mater. Des. 31, 2631–2636 (2010)

    Article  Google Scholar 

  6. Lienert, T.J.; Stellwag Jr, W.L.; Grimmett, B.B.; Warke, R.W.: Friction stir welding studies on mild steel. Weld. J. Res. Suppl. 82, 1s–9s (2003)

    Google Scholar 

  7. De, A.; Bhadeshia, H.K.D.H.; DebRoy, T.: Friction stir welding of mild steel: tool durability and steel microstructure. Mater. Sci. Technol. 30, 1050–1056 (2014)

    Article  Google Scholar 

  8. Watanabe, T.; Takayama, H.; Yanagisawa, A.: Joining of aluminum alloy to steel by friction stir welding. J. Mater. Process. Technol. 178, 342–349 (2006)

    Article  Google Scholar 

  9. Ma, Z.Y.; Mishra, R.S.; Mahoney, M.W.; Grimes, R.: High strain rate superplasticity in friction stir processed Al–Mg–Zr alloy. Mater. Sci. Eng. A 351, 148–153 (2003)

    Article  Google Scholar 

  10. Bauri, R.; Yadav, D.; Suhas, G.: Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in-situ composite. Mater. Sci. Eng. A 528, 4732–4739 (2011)

    Article  Google Scholar 

  11. Shahi, A.; Sohi, M.H.; Ahmadkhaniha, D.; Ghambari, M.: In situ formation of Al\(_{3}\)Ni composites on commercially pure aluminum by friction stir processing. Int. J. Adv. Manuf. Technol. 75, 1331–1337 (2014)

    Article  Google Scholar 

  12. D.H, Choi; Y Il, Kim; D.U,; S.B, Jung: Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4. Trans. Nonferrous Met. Soc. China 22, s614–s618 (2012)

    Article  Google Scholar 

  13. Adel Mehraban, F.; Karimzadeh, F.; Abbasi, M.H.: Development of surface nanocomposite based on Al–Ni–O ternary system on Al6061 alloy by friction-stir processing and evaluation of its properties. JOM 67, 998–1006 (2015)

    Article  Google Scholar 

  14. Alidokht, S.A.; Abdollah-Zadeh, A.; Soleymani, S.; Assadi, H.: Microstructure and tribological performance of an aluminum alloy based hybrid composite produced by friction stir processing. Mater. Des. 32, 2727–2733 (2011)

    Article  Google Scholar 

  15. Yuvaraj, N.; Aravindan, S.: Vipin.: Wear characteristics of Al5083 surface hybrid nano-composites by friction stir processing. Trans. Indian Inst. Met. 70, 1–19 (2016)

    Google Scholar 

  16. Khorrami, M.S.; Kazeminezhad, M.; Miyashita, Y.; Kokabi, A.H.: Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing. Int. J. Miner. Metall. Mater. 24, 297–308 (2017)

    Article  Google Scholar 

  17. Ding, Z.; Zhang, C.; Xie, L.; Zhang, L.-C.; Wang, L.; Lu, W.: Effects of friction stir processing on the phase transformation and microstructure of TiO\(_{2}\)-compounded Ti–6Al–4V Alloy. Metall. Mater. Trans. A 47, 5675–5679 (2016)

    Article  Google Scholar 

  18. Ramesh, C.S.; Noor Ahmed, R.; Mujeebu, M.A.; Abdullah, M.Z.: Fabrication and study on tribological characteristics of cast copper-TiO\(_{2}\)-boric acid hybrid composites. Mater. Des. 30, 1632–1637 (2009)

    Article  Google Scholar 

  19. Jain, V.K.S.; Muhammed, P.M.; Muthukumaran, S.; Babu, S.P.K.: Microstructure, mechanical and sliding wear behavior of AA5083–B4C/SiC/TiC surface composites fabricated using friction stir processing. Trans. Indian Inst. Met. 71, 1519–1529 (2018)

    Article  Google Scholar 

  20. Prado, R.; Murr, L.; Soto, K.; McClure, J.: Self-optimization in tool wear for friction-stir welding of Al 6061+ 20% Al\(_{2}\)O\(_{3}\) MMC. Mater. Sci. Eng. A 349, 156–165 (2003)

    Article  Google Scholar 

  21. Arora, H.S.; Singh, H.; Dhindaw, B.K.: Composite fabrication using friction stir processing—a review. Int. J. Adv. Manuf. Technol. 61, 1043–1055 (2012)

    Article  Google Scholar 

  22. Madhusudhan Reddy, G.; Sambasiva Rao, A.; Srinivasa Rao, K.: Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy. Trans. Indian Inst. Met. 66, 13–24 (2013)

    Article  Google Scholar 

  23. Sharifitabar, M.; Sarani, A.; Khorshahian, S.; Shafiee Afarani, M.: Fabrication of 5052Al/Al\(_{2}\)O\(_{3}\) nanoceramic particle reinforced composite via friction stir processing route. Mater. Des. 32, 4164–4172 (2011)

    Article  Google Scholar 

  24. Khayyamin, D.; Mostafapour, A.; Keshmiri, R.: The effect of process parameters on microstructural characteristics of AZ91/SiO\(_{2}\) composite fabricated by FSP. Mater. Sci. Eng. A 559, 217–221 (2013)

    Article  Google Scholar 

  25. Khodabakhshi, F.; Simchi, A.; Kokabi, A.H.; Gerlich, A.P.; Nosko, M.: Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al–Mg–TiO\(_{2}\) nanocomposites. Mater. Des. 63, 30–41 (2014)

    Article  Google Scholar 

  26. Sharma, V.; Prakash, U.; Kumar, B.V.M.: Surface composites by friction stir processing: a review. J. Mater. Process. Technol. 224, 117–134 (2015)

    Article  Google Scholar 

  27. Yadav, D.; Bauri, R.: Processing, microstructure and mechanical properties of nickel particles embedded aluminum matrix composite. Mater. Sci. Eng. A 528, 1326–1333 (2011)

    Article  Google Scholar 

  28. Ramesh, C.S.; Khan, A.R.A.; Ravikumar, N.; Savanprabhu, P.: Prediction of wear coefficient of Al6061–TiO\(_{2}\) composites. Wear 259, 602–608 (2005)

    Article  Google Scholar 

  29. Jerome, S.; Ravisankar, B.; Kumar Mahato, P.; Natarajan, S.: Synthesis and evaluation of mechanical and high-temperature tribological properties of in-situ AlTiC composites. Tribol. Int. 43, 2029–2036 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V.K.S., Varghese, J. & Muthukumaran, S. Effect of First and Second Passes on Microstructure and Wear Properties of Titanium Dioxide-Reinforced Aluminum Surface Composite via Friction Stir Processing. Arab J Sci Eng 44, 949–957 (2019). https://doi.org/10.1007/s13369-018-3312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3312-1

Keywords

Navigation