Skip to main content
Log in

Cell Aggregating Temperament and Biopotency of Cultivable Indigenous Actinobacterial Community Profile in Chicken (Gallus gallus domesticus) Gut System

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of the present study is to explore the population density and diversity of cultivable gut actinobacterial flora from chicken faeces and assess their probiotic attributes. The cultivation-dependent method revealed that occurrence of total actinobacterial population density ranged between 3.20 and 6.55 log CFU \(\hbox {gfw}^{-1}\). Totally, 108 actinobacteria were isolated from faeces of indigenous chickens, among which 50 (GD1–GD50) were chosen according to their distinctive morphological phenotypes and growth rate. The diversity profile of cultivable actinobacterial community divulges that Streptomyces had a higher frequency of distribution (30%) followed by Nocardiopsis (14%), Pseudonocardia (12%), Kitasatospora (10%), Thermoactinomyces (8%), Actinomadura (8%), Kibdelosporangium (6%), Thermomonospora (4%), Saccharopolyspora (4%), whereas Actinokineospora and Actinopolyspora showed low percentage of frequency (2%). The actinobacterial cultures (\({n}=50\)) were screened for colonization ability and beneficial activity (production of functional dietary enzymes and antibacterial activity) which are essential for the screening of indigenous probionts to ensure better colonization and exert beneficial effects on the host. The results depict that among the 50 actinobacterial isolates, 23 (40%) showed high aggregation profile and only 15 (30%) isolates exhibited constructive results to produce multiple dietary exoenzymes. The nine isolates revealing excellent multiple inhibitory activities against all the tested bacterial pathogens were subjected to multicriteria decision analysis wherein GD5 and GD18 ranked as the prominent probionts. Together, the present findings suggest that the chicken faeces may represent an unexplored reservoir of novel cultivable actinobacteria with a potential target for probiotics and bioprospecting for novel bioactive molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isolauri, E.; Salminen, S.; Ouwehand, A.C.: Probiotics. Best Pract. Res. Clin. Gastroenterol. 18, 299–313 (2004)

    Article  Google Scholar 

  2. Fuller, R.: Probiotics in man and animals. J. Appl. Bacteriol. 66, 365–378 (1989)

    Article  Google Scholar 

  3. Schaschtsiek, M.; Hammes, W.P.; Hertel, C.: Characterization of Lactobacillus coryniformis DSM 20001 T surface protein Cpf mediating co-aggregation with and aggregation among pathogens. Appl. Environ. Microbiol. 70, 7078–7085 (2004)

    Article  Google Scholar 

  4. Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.K.: Marine actinobacterial metabolites: current status and future perspectives. Microbiol. Res. 168, 311–332 (2013)

    Article  Google Scholar 

  5. Tan, L.T.H.; Chan, K.G.; Lee L.H.; Goh, B.H.: Streptomyces bacteria as potential probiotics in aquaculture. Front. Microbiol. 7 (2016)

  6. Tan, H.; Deng, Z.; Cao, L.: Isolation and characterization of actinomycetes from healthy goat faeces. Lett. Appl. Microbiol. 49, 248–253 (2009)

    Article  Google Scholar 

  7. Latha, S.; Dhanasekaran, D.: Antibacterial and extracellular enzyme activities of gut actinobacteria isolated from Gallus gallus domesticus and Capra hircus. J. Chem. Pharm. Res. 5, 379–385 (2013)

    Google Scholar 

  8. Latha, S.; Vinothini, G.; Calvin, D.J.D.; Dhanasekaran, D.: In vitro probiotic profile based selection of indigenous actinobacterial probiont Streptomyces sp. JD9 for enhanced broiler production. J. Biosci. Bioeng. 121, 124–131 (2015)

    Article  Google Scholar 

  9. Latha, S.; Sivaranjani, G.; Dhanasekaran, D.: Response surface methodology: a non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit. Rev. Microbiol. 43, 567–582 (2017)

    Article  Google Scholar 

  10. Ramesh, S.; Mathivanan, N.: Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J. Microbiol. Biotechnol. 25, 2103–2111 (2009a)

    Article  Google Scholar 

  11. Shirling, E.B.; Gottlieb, D.: Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313–340 (1966)

    Article  Google Scholar 

  12. Williams, S.T.; Sharpe, M.E.; Holt, J.G (eds) Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, MD (1989)

  13. Kaushik, J.K.; Kumar, A.; Duary, R.K.; Mohanty, A.K.; Grover, S.; Batish, V.K.: Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PloS one 4, e8099 (2009)

    Article  Google Scholar 

  14. Meena, B.; Rajan, L.A.; Vinithkumar, N.V.; Kirubagaran, R.: Novel marine actinobacteria from emerald Andaman and Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. BMC Microbiol. 13, 145 (2013)

    Article  Google Scholar 

  15. Singh, K.; Richa, K.; Bose, H.; Karthik, L.; Kumar, G.; Rao, K.V.B.: Statistical media optimization and cellulase production from marine Bacillus VITRKHB. 3 Biotech. 4, 591–598 (2014)

    Article  Google Scholar 

  16. Ghorbani-Nasrabadi, R.; Greiner, R.; Alikhani, H.A.; Hamedi, J.: Identification and determination of extracellular phytate-degrading activity in actinomycetes. World J. Microbiol. Biotechnol. 28, 2601–2608 (2012)

    Article  Google Scholar 

  17. Arijit, D.; Sourav, B.; Naimisha, R.; Rajan, S.S.: Improved production and purification of pectinase from Streptomyces sp. GHBA10 isolated from Valapattanam mangrove habitat, Kerala, India. Int. Res. J. Biol. Sci. 2, 16–22 (2013)

    Google Scholar 

  18. Pradeep, G.C.; Choi, Y.H.; Choi, Y.S.; Seong, C.N.; Cho, S.S.; Lee, H.J.; Yoo, J.C.: A novel thermostable cellulase free xylanase stable in broad range of pH from Streptomyces sp. CS428. Process Biochem. 48, 1188–1196 (2013)

    Article  Google Scholar 

  19. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  20. Zhang, D.; Luo, Y.; Chu, S.; Zhi, Y.; Wang, B.; Zhou, P.: Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency. Prep. Biochem. Biotechnol. 46, 575–585 (2015)

    Article  Google Scholar 

  21. Ramesh, S.; Rajesh, M.; Mathivanan, N.: Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosyst. Eng. 32, 791–800 (2009b)

    Article  Google Scholar 

  22. Kuhad, R.C.; Kapoor, M.; Rustagi, R.: Enhanced production of an alkaline pectinase from Streptomyces sp. RCK-SC by whole-cell immobilization and solid-state cultivation. World J. Microbiol. Biotechnol. 20, 257–263 (2004)

    Article  Google Scholar 

  23. Bajaj, B.K.; Wani, M.A.: Enhanced phytase production from Nocardia sp. MB 36 using agro-residues as substrates: potential application for animal feed production. Eng. Life Sci. 11, 620–628 (2011)

    Article  Google Scholar 

  24. Liu, Y.; Deng, Z.; Tan, H.; Deng, Q.; Cao, L.: Characterization of cattle fecal Streptomyces strains converting cellulose and hemicelluloses into reducing sugars. Environ. Sci. Pollut. Res. 21, 6069–6075 (2014)

    Article  Google Scholar 

  25. Sathiyanarayanan, G.; Gandhimathi, R.; Sabarathnam, B.; Kiran, G.S.; Selvin, J.: Optimization and production of pyrrolidone antimicrobial agent from marine sponge-associated Streptomyces sp. MAPS15. Bioprocess Biosyst. Eng. 37, 561–573 (2014)

    Article  Google Scholar 

  26. Abdhul, K.; Ganesh, M.; Shanmughapriya, S.; Vanithamani, S.; Kanagavel, M.; Anbarasu, K.; Natarajaseenivasan, K.: Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. Int. J. Biol. Macromol. 79, 800–806 (2015)

    Article  Google Scholar 

  27. Saarela, M.; Mogensen, G.; Fonden, R.; Mättö, J.; Mattila-Sandholm, T.: Probiotic bacteria: safety, functional and technological properties. Biotechnol. J. 84, 197–215 (2000)

    Article  Google Scholar 

  28. Campbell, J.M.; Fahey, G.C.; Wolf, B.W.: Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J. Nutr. 127, 130–136 (1997)

    Article  Google Scholar 

  29. Ranjani, A.; Gopinath, P.M.; Rajesh, K.; Dhanasekaran, D.; Priyadharsini, P.: Diversity of silver nanoparticle synthesizing actinobacteria isolated from marine soil, Tamil Nadu, India. Arab. J. Sci. Eng. 41, 25–32 (2016)

    Article  Google Scholar 

  30. Vijayakumar, R.; Muthukumar, C.; Thajuddin, N.; Panneerselvam, A.; Saravanamuthu, R.: Studies on the diversity of actinomycetes in the Palk Strait region of Bay of Bengal, India. Actinomycetologica 21, 59–65 (2007)

    Article  Google Scholar 

  31. Chen, X.; Qiu, S.; Jiang, Y.; Han, L.; Huang, X.; Jiang, C.: Diversity, bioactivity and drug development of cultivable actinobacteria in six species of bird feces. Am. J. Biosci. 2, 13–18 (2014)

    Article  Google Scholar 

  32. Canzi, E.; Guglielmetti, S.; Mora, D.; Tamagnini, I.; Parini, C.: Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie Leeuwenhoek 88, 207–219 (2005)

    Article  Google Scholar 

  33. Muthu Selvam, R.; Vinothini, G.; Palliyarai Thaiyammal, S.; Latha, S.; Chinnathambi, A.; Dhanasekaran, D.; Padmanabhan, P.; Ali Alharbi, S.; Archunan, G.: The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone. Biofouling 32, 71–79 (2016)

    Article  Google Scholar 

  34. Boris, S.; Suárez, J.E.; Barbés, C.: Characterization of the aggregation promoting factor from Lactobacillus gasseri vaginal isolate. J. Appl. Microbiol. 83, 413–420 (1997)

    Article  Google Scholar 

  35. Gu, S.B.; Zhao, L.N.; Wu, Y.; Li, S.C.; Sun, J.R.; Huang, J.F.; Li, D.D.: Potential probiotic attributes of a new strain of Bacillus coagulans CGMCC 9951 isolated from healthy piglet feces. World J. Microbiol. Biotechnol. 31, 851–863 (2015)

    Article  Google Scholar 

  36. Santoso, U.; Tanaka, K.; Ohtani, S.: Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. Br. J. Nutr. 74, 523–529 (1995)

    Article  Google Scholar 

  37. Prakashwadekar, B.; Dharmadhikari, S.M.: Screening of marine actinomycetes as probiotics for production of bacteriocin. Int. J. Curr. Microbiol. App. Sci. 4, 414–421 (2015)

    Google Scholar 

  38. Gopinath, P.M.; Ranjani, A.; Dhanasekaran, D.; Thajuddin, N.; Archunan, G.; Akbarsha, M.A., Gulyás, B.; Padmanabhan, P.: Multi-functional nano silver: a novel disruptive and theranostic agent for pathogenic organisms in real-time. Sci. Rep. 6 (2016)

  39. Anahas, A.M.P.; Muralitharan, G.: Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles. Bioresour. Technol. 184, 9–17 (2015)

    Article  Google Scholar 

  40. Ayoko, G.A.; Bonire, J.J.; Abdulkadir, S.S.; Olurinola, P.F.; Ehinmidu, J.O.; Kokot, S.; Yiasel, S.: A multicriteria ranking of organotin (IV) compounds with fungicidal properties. Appl. Organomet. Chem. 17, 749–758 (2003)

    Article  Google Scholar 

  41. Brans, J.P.; Vincke, P.: A preference ranking organisation method: (The PROMETHEE method for multiple criteria decision-making). Manag. Sci. 31, 647–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

GV is grateful to DST (Department of Science and Technology), New Delhi, Government of India, for the award of INSPIRE fellowship (IF 140963/DST/INSPIRE Fellowship/2014/Dt.30.12.2014). SL is indebted to DST-SERB (Department of Science and Technology-Science and Engineering Research Board), New Delhi, Government of India, for the National Post-Doctoral fellowship (PDF/2016/003456/Dt.28.03.2017). All the authors thank the DST-FIST (Department of Science and Technology-Fund for Improvement of S&T Infrastructure) programme for providing instrument facility (DST Sanction Order No-SR/FIST/LSI-013/2012/Dt.13.08.2012). DD is thankful to the UGC (University Grants commission), New Delhi, Government of India, for the financial support in the form of Raman Fellowship for Post-Doctoral Research in the USA (F.no: 5-29/2016(IC), Dt.10.02. 2016). Special mention to Dr. P.M. Gopinath for his valuable suggestions in performing MCDA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharumadurai Dhanasekaran.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest in the publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2095 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinothini, G., Kavitha, R., Latha, S. et al. Cell Aggregating Temperament and Biopotency of Cultivable Indigenous Actinobacterial Community Profile in Chicken (Gallus gallus domesticus) Gut System. Arab J Sci Eng 43, 3429–3442 (2018). https://doi.org/10.1007/s13369-018-3083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3083-8

Keywords

Navigation