Skip to main content
Log in

Use of a Fenton-Like Process Based on Nano-Haematite to Treat Synthetic Wastewater Contaminated by Phenol: Process Investigation and Statistical Optimization

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Phenolic compounds are priority chemicals which, when discharged in wastewater, need to be removed. Photochemical treatment has been demonstrated to be very effective for this task. This paper reports a study to assess the potential of a nano-photo-Fenton-like reagent (NFLR), based on synthesized haematite (\(\upalpha \)-\(\hbox {Fe}_{2}\hbox {O}_{3})\) nano-crystalline powder, to remove phenol from wastewater. The use of haematite nano-structures as a source of \(\hbox {Fe}^{3+}\) in NFLR provides a novel and low-cost nano-catalysis treatment of phenol wastewater. The study evaluated the effect of the initial concentration of the phenol pollutant (200–1000 mg/L), and the photo-Fenton parameters such as the nano-haematite and \(\hbox {H}_{2}\hbox {O}_{2}\) concentrations (100–800 mg/L) and pH range from 2 to 8. NFLR was able to remove about 98% of phenol in about 20 min from a solution initially containing 400 ppm of phenol. Furthermore, a Box–Behnken factorial design was applied to optimize the operating NFLR parameters. The optimum conditions for phenol removal were shown to be 398 mg/L for \(\hbox {Fe}^{3+}\), 41 mg/L for \(\hbox {H}_{2}\hbox {O}_{2}\) and 3.25 for pH. The degradation obtained using a response surface methodology is compared with that recorded experimentally at the optimized values. The NFLR, based on nano-haematite, was found to be an effective treatment for the removal of phenol from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gümüş, D.; Akbal, F.: Comparison of Fenton and electro-Fenton processes for oxidation of phenol. Process Saf. Environ. Prot. 103(Part A), 252–258 (2016)

    Google Scholar 

  2. Gad, N.S.; Saad, A.S.: Effect of environmental pollution by phenol on some physiological parameters of oreochromis niloticus. Glob. Vet. 2(6), 312–319 (2008)

    Google Scholar 

  3. Mohapatra, D.P.; Brar, S.K.; Tyagi, R.D.; Surampalli, R.Y.: Physico-chemical pre-treatment and biotransformation of wastewater and wastewater Sludge–Fate of bisphenol A. Chemosphere 78, 923–941 (2010)

    Article  Google Scholar 

  4. Aksu, Z.: Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40, 997–1026 (2005)

    Article  Google Scholar 

  5. Michałowicz, J.; Duda, W.: Phenols—sources and toxicity. Pol. J. Environ. Stud. 16(3), 347–362 (2007)

    Google Scholar 

  6. Vidic, R.D.; Suidan, M.T.; Brenner, R.C.: Oxidative coupling of phenols on activated carbon: impact on adsorption equilibrium. Environ. Sci. Technol. 27, 2079–2085 (2007)

    Article  Google Scholar 

  7. Dabhade, M.A.; Saidutta, M.B.; Murthy, D.V.R.: Adsorption of phenol on granular activated carbon from nutrient medium: equilibrium and kinetic study. Int. J. Environ. Res. 3(4), 557–568 (2009)

    Google Scholar 

  8. Stavropoulos, G.G.; Samaras, P.; Sakellaropoulos, G.P.: Effect of activated carbons modification on porosity, surface structure and phenol adsorption. J. Hazard. Mater. 151, 414–421 (2008)

    Article  Google Scholar 

  9. Arshad, S.H.; Aziz, A.A.; Ngadi, N.; Amin, N.S.: Phenol adsorption by activated carbon of different fiber size derived from empty fruit bunches. J. Oil Palm Res. 24, 1524–1532 (2012)

    Google Scholar 

  10. Babuponnusamim, A.; Muthukumar, K.: A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2, 557–572 (2014)

    Article  Google Scholar 

  11. SAS Institute; Inc JMP 8: Statistical Discovery Software. Cary, NC (2009). http://www.jmp.com/

  12. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (1991)

    MATH  Google Scholar 

  13. Benatti, C.T.; Tavares, C.R.G.; Guedes, T.A.: Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. J. Environ. Manag. 80, 66–74 (2006)

    Article  Google Scholar 

  14. Tony, A.; Purcell, P.J.; Zhao, Y.Q.; Tayeb, A.M.; El-Sherbiny, M.F.: Photo-catalytic degradation of an oil–water emulsion using the photo-Fenton treatment process: effects and statistical optimization. J. Environ. Sci. Health A A44(2), 179–187 (2009)

    Article  Google Scholar 

  15. Sathian, S.; Radha, G.; Shanmugapriya, V.; Rajasimman, M.; Karthikeyan, C.: Optimization and kinetic studies on treatment of textile dye wastewater using Pleurotus floridanus. Appl. Water Sci. 3(1), 41–48 (2013)

    Article  Google Scholar 

  16. Suarez-Escobar, A.; Pataquiva-Mateus, A.; Lopez-Vasquez, A.: Electrocoagulation—photocatalytic process for the treatment of lithographic wastewater. Optimization using response surface methodology (RSM) and kinetic study. Catal. Today 266, 120–125 (2016)

    Article  Google Scholar 

  17. Feng, H.; Le-cheng, L.: Degradation kinetics and mechanisms of phenol in photo-Fenton process. J. Zhejiang Univ. 5(2), 198–205 (2004)

    Article  Google Scholar 

  18. Faisal, I.: Oxidation of phenolic wastewater by Fenton’s reagent. Iraqi J. Chem. Pet. Eng. 10(2), 35–42 (2009)

    MathSciNet  Google Scholar 

  19. Assadi, A.; Eslami, A.: Comparison of phenol photodegradation by UV/\(\text{ H }_{2}\text{ O }_{2}\) and photo-Fenton processes. Environ. Eng. Manag. J. 9(6), 807–812 (2010)

    Google Scholar 

  20. Minella, M.; Marchetti, G.; De Laurentiisa, E.; Malandrinoa, M.; Maurinoa, V.; Mineroa, C.; Vionea, D.; Hanna, K.: Photo-Fenton oxidation of phenol with magnetite as iron source. Appl. Catal. B Environ. 154–155, 102–109 (2014)

    Article  Google Scholar 

  21. Srodowiska, R.O.: Phenol oxidation in the photo-Fenton process catalyzed by clinoptylolite modified with co. Annu. Set Environ. Prot. 17, 113–124 (2015)

    Google Scholar 

  22. Jiang, C.; Pang, S.; Ouyang, F.; Ma, J.; Jiang, J.: A new insight into Fenton and Fenton-like processes for water treatment. J. Hazard. Mater. 174, 813–817 (2010)

    Article  Google Scholar 

  23. Fang, X.; Chen, C.; Jin, M.; Kuang, Q.; Xie, Z.; Xie, S.; Rong- Huang, B.; Zheng, L.: Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment. J. Mater. Chem. 19, 6154–6160 (2009)

    Article  Google Scholar 

  24. Zeng, S.; Tang, K.; Li, T.; Liang, Z.; Wang, D.; Wang, Y.; Zhou, W.: Hematite hollow spindles and microspheres: selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment. J. Phys. Chem. C 111(28), 10217–10225 (2007)

    Article  Google Scholar 

  25. Lin, S.S.; Gurol, M.D.: Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol. 32(10), 1417–1423 (1998)

    Article  Google Scholar 

  26. Lu, M.C.; Chen, J.N.; Huang, H.H.: Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere 46(1), 131–136 (2002)

    Article  Google Scholar 

  27. Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B.: Nanomaterials-enabled water and wastewater treatment. NanoImpact 3–4, 22–39 (2016)

    Article  Google Scholar 

  28. Najjar, W.; Chirchi, L.; Santosb, E.; Ghorhel, A.: Kinetic study of 2-nitrophenol photodegradation on Al-pillared montmorillonite doped with copper. J. Environ. Monit. 3, 697–701 (2001)

    Article  Google Scholar 

  29. He, F.; Lei, L.: Degradation kinetics and mechanisms of phenol in photo-Fenton process. J. Zhejiang Univ. 5(2), 198–205 (2004)

    Article  Google Scholar 

  30. Wu, J.; Jia, R.; Liu, C.; Wang, H.: Study of degradation of phenol in wastewater sample via advanced oxidation technology. In: International Forum on Energy, Environmental Science and Material (IFEESM), pp. 584–587. Published by Atlantis Press (2015)

  31. Radovic, M.D.; Mitrovic, J.Z.; Kostic, M.M.; Bojic, D.V.; Petrovic, M.M.; Najdanovic, S.M.; Bojicc, A.L.: Fenton and photo-Fenton processes for the decolorization of reactive dyes. Comparison of ultraviolet radiation/hydrogen peroxide. Hem. Ind. J. 69(6), 657–665 (2015)

    Article  Google Scholar 

  32. Weichgrebe, D.; Vogelpohl, A.: A comparative study of wastewater treatment by chemical wet oxidation. Chem. Eng. Process 33(4), 199–203 (1994)

    Article  Google Scholar 

  33. Utset, B.; Garcia, J.; Casado, J.; Domenech, X.; Peral, J.: Replacement of \(\text{ H }_{2}\text{ O }_{2}\) by \(\text{ O }_{2}\) in Fenton and photo-Fenton reactions. Chemosphere 41(8), 1187–1192 (2000)

    Article  Google Scholar 

  34. Martínez, F.; Calleja, G.; Melero, J.A.; Molina, R.: Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Appl. Catal. B Environ. 60(3–4), 181–190 (2005)

    Article  Google Scholar 

  35. Wang, N.; Zheng, T.; Zhang, G.; Wang, P.: A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 4(1), 762–787 (2016)

    Article  Google Scholar 

  36. Sarria, V.; Kenfack, S.; Guillod, O.; Pulgarin, C.: An innovative coupled solar-biological system at field pilot scale for the treatment of biorecalcitrant pollutants. J. Photochem. Photobiol. A 159(1), 89–99 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha A. Tony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tony, M.A., Mansour, S.A., Tayeb, A.M. et al. Use of a Fenton-Like Process Based on Nano-Haematite to Treat Synthetic Wastewater Contaminated by Phenol: Process Investigation and Statistical Optimization. Arab J Sci Eng 43, 2227–2235 (2018). https://doi.org/10.1007/s13369-017-2632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2632-x

Keywords

Navigation