Skip to main content
Log in

Interfacial Mechanical Performance of Composite Honeycomb Sandwich Panels for Aerospace Applications

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A simple and cost-effective manufacturing process was employed to prepare composite honeycomb sandwich panels for aerospace applications. Carbon fiber–epoxy matrix composite facesheets were first prepared by vacuum-assisted resin transfer molding, and later these facesheets were bonded with the Nomex\(^{\textregistered }\) honeycomb core by compression technique wherein the whole sandwich assembly containing facesheets, epoxy- based adhesive film and honeycomb core was clamped between two parallel metallic plates followed by curing in oven. Different curing temperatures, i.e., 100, 110, 120 and 130\({^{\circ }}\)C, and curing times, i.e., 2 and 3 h, were employed to optimize the curing parameters of the adhesive film to join CF–epoxy facesheets with the honeycomb core. The optimization of the curing parameters was related to the maximum load-bearing capability of composite honeycomb sandwich panels under three-point bend test and associated mechanical properties. It was shown that the composite honeycomb sandwich panels cured at 130\({^{\circ }}\)C for 3 h demonstrated maximum mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rion, J.; et al.: Ultra-light asymmetric photovoltaic sandwich structures. Compos Part A Appl Sci Manuf 40(8), 1167–1173 (2009)

    Article  Google Scholar 

  2. Composite, H.: HexWeb tm honeycomb sandwich design technology. http (2004)

  3. Fagerberg, L.; Zenkert, D.: Imperfection-induced wrinkling material failure in sandwich panels. J. Sandw. Struct. Mater. 7(3), 195–219 (2005)

    Article  Google Scholar 

  4. Harris, B.; Crisman, W.: Face-wrinkling mode of buckling of sandwich panels. ASCE J Eng Mech Div 91, 93–111 (1965)

    Google Scholar 

  5. Ley, R.P., Lin, W., Mbanefo, U.: Facesheet wrinkling in sandwich structures. In: National Aeronautics and Space Administration, Langley Research Center (1999)

  6. Avery, J.L.; Sankar, B.V.: Compressive failure of sandwich beams with debonded face-sheets. J. Compos. Mater. 34(14), 1176–1199 (2000)

    Article  Google Scholar 

  7. Cantwell, W.; Davies, P.: A test technique for assessing core-skin adhesion in composite sandwich structures. J. Mater. Sci. Lett. 13(3), 203–205 (1994)

  8. Cantwell, W.; Davies, P.: A study of skin-core adhesion in glass fibre reinforced sandwich materials. Appl. Compos. Mater. 3(6), 407–420 (1996)

    Article  Google Scholar 

  9. Ratcliffe, J.; Cantwell, W.: A new test geometry for characterizing skin-core adhesion in thin-skinned sandwich structures. J. Mater. Sci. Lett. 19(15), 1365–1367 (2000)

    Article  Google Scholar 

  10. Cantwell, W.; et al.: Interfacial fracture in sandwich laminates. Compos. Sci. Technol. 59(14), 2079–2085 (1999)

    Article  Google Scholar 

  11. Velecela, O.; Found, M.; Soutis, C.: Crushing energy absorption of GFRP sandwich panels and corresponding monolithic laminates. Compos. Part A Appl. Sci. Manuf. 38(4), 1149–1158 (2007)

    Article  Google Scholar 

  12. Yu, S.; Cleghorn, W.: Free flexural vibration analysis of symmetric honeycomb panels. J. Sound Vib. 284(1), 189–204 (2005)

    Article  Google Scholar 

  13. Wang, B.; Yang, M.: Damping of honeycomb sandwich beams. J. Mater. Process. Technol. 105(1), 67–72 (2000)

    Article  Google Scholar 

  14. Kim, H.-Y.; Hwang, W.: Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams. Compos. Struct. 55(1), 51–62 (2002)

    Article  Google Scholar 

  15. Fan, H.; et al.: An experiment study on the failure mechanisms of woven textile sandwich panels under quasi-static loading. Compos. Part B Eng. 41(8), 686–692 (2010)

    Article  Google Scholar 

  16. Langdon, G.; et al.: The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments. Eng. Struct. 36, 104–112 (2012)

    Article  Google Scholar 

  17. Okada, R.; Kortschot, M.: The role of the resin fillet in the delamination of honeycomb sandwich structures. Compos. Sci. Technol. 62(14), 1811–1819 (2002)

    Article  Google Scholar 

  18. Rion, J.; Leterrier, Y.; Månson, J.-A.E.: Prediction of the adhesive fillet size for skin to honeycomb core bonding in ultra-light sandwich structures. Compos. Part A Appl. Sci. Manuf. 39(9), 1547–1555 (2008)

    Article  Google Scholar 

  19. Grimes, G.C.: The adhesive–honeycomb relationship. In: Applied Polymer Symposium (1966)

  20. Frostig, Y.; Baruch, M.: Bending of sandwich beams with transversely flexible core. AIAA J. 28(3), 523–531 (1990)

    Article  MATH  Google Scholar 

  21. Soares, B.; Reis, L.; Silva, A.: Testing of sandwich structures with cork agglomerate cores. In: Eighth International Conference on Sandwich Structures (ICSS 8), Porto (2008)

  22. Carlsson, L.; Sendlein, L.; Merry, S.: Literature survey. J. Compos. Mater. 25(1), 101–116 (1991)

    Article  Google Scholar 

  23. Giglio, M.; Gilioli, A.; Manes, A.: Numerical investigation of a three point bending test on sandwich panels with aluminum skins and NomexTM honeycomb core. Comput. Mater. Sci. 56, 69–78 (2012)

    Article  Google Scholar 

  24. Bénard, Q.; Fois, M.; Grisel, M.: Peel ply surface treatment for composite assemblies: chemistry and morphology effects. Compos. Part A Appl. Sci. Manuf. 36(11), 1562–1568 (2005)

    Article  Google Scholar 

  25. Benard, Q.; et al.: Influence of the polymer surface layer on the adhesion of polymer matrix composites. J. Thermoplast. Compos. Mater. 22(1), 51–61 (2009)

    Article  Google Scholar 

  26. Bénard, Q.; Fois, M.; Grisel, M.: Roughness and fibre reinforcement effect onto wettability of composite surfaces. Appl. Surf. Sci. 253(10), 4753–4758 (2007)

    Article  Google Scholar 

  27. Johnson, A.; Sims, G.: Mechanical properties and design of sandwich materials. Composites 17(4), 321–328 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, U., Ahmad, M.S., Rakha, S.A. et al. Interfacial Mechanical Performance of Composite Honeycomb Sandwich Panels for Aerospace Applications. Arab J Sci Eng 42, 1775–1782 (2017). https://doi.org/10.1007/s13369-016-2307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2307-z

Keywords

Navigation