Skip to main content
Log in

Deregulated Multiarea AGC Scheme Using BBBC-FOPID Controller

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a fractional-order proportional–integral–derivative (FOPID) controller for automatic generation control (AGC) scheme has been designed utilizing the big bang–big crunch algorithm. An AGC scheme in a deregulated electricity market environment has been developed. The objective was to compute optimal FOPID controller parameters so that on a load perturbation generator can regulate power, to achieve the best dynamic response of frequency. FOPID controller has five parameters to be tuned and provides two more degrees of freedom in comparison with the conventional PID controller. The performance of FOPID controller has been checked on 2-area power system and 75-bus real power system. A comparative study is also carried out between the results of FOPID and PID controllers. The obtained results demonstrate the effective performance of the FOPID controller and show the success and validity of FOPID controller in terms of performance parameters, i.e., settling time and oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, J.; Ng, K.H.; Sheble, G.: AGC simulator for price based operation part I. IEEE Trans. Power Syst. 12, 527–532 (1997)

    Article  Google Scholar 

  2. Christie, R.D.; Bose, A.: Load frequency control issues in power system operation after deregulation. IEEE Trans. Power Syst. 11, 1191–1200 (1996)

    Article  Google Scholar 

  3. Daneshfar, F.; Bevrani, H.: Multiobjective design of load frequency contra using genetic algorithms. Int. J. Electr. Power Energy Syst. 42, 257–263 (2012)

    Article  Google Scholar 

  4. Aditya, S.K.: Design of load frequency controllers using genetic algorithm for two area interconnected hydro power system. Electr. Power Compon. Syst. 31, 81–94 (2003)

    Article  Google Scholar 

  5. Abido, M.A.; Khalid, M.S.; Worku, M.Y.: An efficient ANFIS-based PI controller for maximum power point tracking of PV systems. Arab. J. Sci. Eng. 40, 2641–2651 (2015)

    Article  Google Scholar 

  6. Panda, S.; Padhy, N.P.: Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft. Comput. 8, 1418–1427 (2008)

    Article  Google Scholar 

  7. Ali, E.S.; Abd-Elazim, S.M.: Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Int. J. Electr. Power Energy Syst. 33, 633–638 (2011)

    Article  Google Scholar 

  8. Pandey, S.K.; Mohanty, S.R.; Kishor, N.: A literature survey on load-frequency control for conventional and distribution generation power systems. Renew. Sust. Energy Rev. 25, 318–334 (2013)

    Article  Google Scholar 

  9. Shayeghi, H.; Shayanfar, H.A.; Jalili, A.: Load frequency control strategies: a state-of-the-art survey for the researcher. Energy Convers. Manag. 50, 344–353 (2009)

    Article  MATH  Google Scholar 

  10. Changmao, Q.; Naiming, Q.; Zhiguo, S.: Fractional PID controller design of hypersonic flight vehicle, computer, mechatronics. In: IEEE 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), pp. 466–469 (2010)

  11. Hamamci, S.E.: An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans. Autom. Control 52, 1964–1969 (2007)

  12. Zamani, M.; Karimi-Ghartemani, M.; Sadati, N.; Parniani, M.: Design of fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Pract. 17, 1380–1387 (2009)

    Article  Google Scholar 

  13. Pan, I.; Das, S.: Chaotic multi-objective optimization based design of fractional order PI\(\lambda \)D\(\mu \) controller in AVR system. Int. J. Electr. Power Energy Syst. 43, 393–407 (2012)

    Article  Google Scholar 

  14. Biswas, A.; Das, S.; Abraham, A.; Dasgupta, S.: Design of fractional order PI\(\lambda \)D\(\mu \) controllers with an improved differential evolution. Eng. Appl. Artif. Intell. 22, 343–350 (2009)

    Article  Google Scholar 

  15. Padula, F.; Visioli, A.: Tuning rules for optimal PID and fractional order PID controllers. J. Process Control 21, 69–81 (2011)

    Article  MATH  Google Scholar 

  16. Debbarma, S.; Saikia, L.C.; Sinha, N.: AGC of a multi-area thermal system under deregulated enviornment using a non-integer controller. Electr. Power Syst. Res. 95, 175–183 (2013)

    Article  Google Scholar 

  17. Erol, O.K.; Eskin, I.: New optimization method: big bang-big crunch. Adv. Eng. Softw. 37, 106–111 (2006)

    Article  Google Scholar 

  18. Prudhvi, P.: A complete copper optimization technique using BB–BC in a smart home for a smarter grid and a comparison with GA. In: IEEE 2011 Canadian Conference on Electrical and Computer Engineering, pp. 69–72 (2011)

  19. Engin, Y.; Leon, U.: Big bang–big crunch learning method for fuzzy cognitive maps. Int. J. Comput. Electr. Autom. Control Inf. Eng. 4, 693–702 (2010)

    Google Scholar 

  20. Elgerd, O.I.: Electric Energy Systems Theory: An Introduction. McGraw Hill, New York (1983)

    Google Scholar 

  21. Donde, V.; Pai, M.A.; Hiskens, I.A.: Simulation and optimization in an AGC system after deregulation. IEEE Trans. Power Syst. 16, 481–489 (2001)

    Article  Google Scholar 

  22. Tyagi, B.; Srivastava, S.C.: A LQG based load frequency controller in a competitive electricity environment. Int. J. Emerg. Electr. Power Syst. 2, 1–13 (2005)

    Google Scholar 

  23. Miller, K.S.; Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. El-Khazali, R.: Fractional order PID controller design. Comput. Math. Appl. 66, 639–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Oustaloup, A.; Mathieu, B.; Lanusse, P.: The Crone control of resonant plants: application to a flexible transmission. Eur. J. Control 1, 113–121 (1995)

    Article  Google Scholar 

  27. Podlubny, I.: Fractional-order systems and PI\(\lambda \) D\(\mu \) controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Swati, S.; Yogesh, V.H.: Fractional order PID controller for load frequency control. Energy Convers. Manag. 85, 343–353 (2014)

    Article  Google Scholar 

  29. Dincel, E.; Gene, V.M.I.: A power system stabilizer design by big bang–big crunch algorithm. In: IEEE 2012 Control System, Computing and Engineering Conference, pp. 307–312 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Tyagi, B. & Kumar, V. Deregulated Multiarea AGC Scheme Using BBBC-FOPID Controller. Arab J Sci Eng 42, 2641–2649 (2017). https://doi.org/10.1007/s13369-016-2293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2293-1

Keywords

Navigation