Skip to main content
Log in

Analysis of Fluid Flow and Heat Transfer Characteristics Over a Square Cylinder: Effect of Corner Radius and Nanofluid Volume Fraction

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A numerical study of the consequence of the corner roundness of a square cylinder and nanofluid volume fraction on the warmth transmission and fluid flow phenomenon were studied at low Re (\({ Re}=100\)). The existing nanofluid is made by blending the water with copper nanoparticles, and the blending percentage is in the range of 0–15 % and the corner radius is varying from 0.5D (circle) to 0.71D (square). The numerical solution is accomplished by a FVM-based code. The fluid flow and the warmth transmission characteristics of the sharp and curved surrounded square chamber were considered with the vorticity, isotherm contours, drag and lift coefficients, local Nusselt number \((\textit{Nu}_{\mathrm{local}})\) and average Nusselt number \((\textit{Nu}_{\mathrm{avg}})\) at various volume fractions and for several corner roundness. It is found that the heat transfer amount is maximum at \(r=0.51\), whereas at \(r=0.50\), the fluid forces are least for the every volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(C_\mathrm{p}\) :

Specific heat (J/kg k)

D :

Cross-sectional area in the flow direction (m)

h :

Local convective heat transfer coefficient (\(\hbox {W/m}^{2}\,\hbox {k}\))

H :

Height of the domain (m)

k :

Thermal conductivity (W/m K)

\({L}_{\mathrm{d}}\) :

Downstream face distance from the cylinder center (m)

\({L}_{\mathrm{u}}\) :

Upstream face distance from the cylinder center (m)

n :

The direction normal to the cylinder surface

Nu :

Local Nusselt number on the cylinder surface (dimensionless)

\(\textit{Nu}_{\mathrm{avg}}\) :

Surface-averaged Nusselt number over the cylinder surface (dimensionless)

Pr :

Prandtl \(\hbox {number}\left( =\frac{\mu _\mathrm{f} C_{{P_\mathrm{f}}}}{K_\mathrm{f}}\right) \) (dimensionless)

Re :

Reynolds number \(\left( =\frac{{\rho }_\mathrm{f} U_{\infty } D}{\mu _\mathrm{f}}\right) \) (dimensionless)

St :

Strouhal Number (dimensionless)

t :

Time (dimensionless)

T :

Temperature (K)

\({U}_{\infty }\) :

Free stream velocity (m/s)

x, y :

Cartesian coordinates

\({p}_{\infty }\) :

Free stream pressure

u, v :

Velocity components in x and y directions (dimensionless)

\(\alpha \) :

Thermal diffusivity (\(\hbox {m}^{2}{/}\hbox {s}\))

\(\beta \) :

Thermal expansion coefficient (1/K)

\(\mu \) :

Dynamic viscosity (kg/ms)

\(\rho \) :

Density \((\hbox {kg/m}^{3})\)

\(\theta \) :

Dimensionless temperature

\(\upsilon \) :

Kinematic viscosity (\(\hbox {m}^{2}\)/s)

eff:

Effective property

f:

Base fluid

nf:

Nanofluid

p:

Nanoparticle

\(\infty \) :

Free stream

w:

Cylinder surface

r.m.s:

Root mean squared

–:

Dimensional variable

References

  1. Bhattacharyya, S.; Mahapatra, S.: Vortex shedding around a heated square cylinder under the influence of buoyancy. Heat Mass Transf. 41(9), 824–833 (2005)

    Article  Google Scholar 

  2. Dhiman, A.; Chhabra, R.; Sharma, A.; Eswaran, V.: Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime. Numer. Heat Transf. A Appl. 49(7), 717–731 (2006)

    Article  Google Scholar 

  3. Ji, T.H.; Kim, S.Y.; Hyun, J.M.: Experiments on heat transfer enhancement from a heated square cylinder in a pulsating channel flow. Int. J. Heat Mass Transf. 51(5), 1130–1138 (2008)

    Article  Google Scholar 

  4. Rahnama, M.; Hadi-Moghaddam, H.: Numerical investigation of convective heat transfer in unsteady laminar flow over a square cylinder in a channel. Heat Transf. Eng. 26(10), 21–29 (2005)

    Article  Google Scholar 

  5. Sahu, A.K.; Chhabra, R.; Eswaran, V.: Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime. Int. J. Heat Mass Transf. 52(3), 839–850 (2009)

    Article  MATH  Google Scholar 

  6. Sheard, G.J.; Fitzgerald, M.J.; Ryan, K.: Cylinders with square cross-section: wake instabilities with incidence angle variation. J. Fluid Mech. 630, 43–69 (2009)

    Article  MATH  Google Scholar 

  7. Dey, P.; Das, A.: Steady flow over triangular extended solid attached with square cylinder—a method to reduce drag. Ain Shams Eng. J. 6(3), 929–938 (2015)

    Article  Google Scholar 

  8. Dey, P.; Das, A.: Numerical analysis of drag and lift reduction of square cylinder. Eng. Sci. Technol. Int. J. 18(4), 758–768 (2015)

    Article  Google Scholar 

  9. Das, A.K.; Dey, P.: Prediction of unsteady forced convection over square cylinder in the presence of nanofluid by using ANN. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 102, 899–904 (2015)

    Google Scholar 

  10. Dey, P.; Sarkar, A.; Das, A.K.: Capability to predict the steady and unsteady reduced aerodynamic forces on a square cylinder by ANN and GEP. Neural Comput. Appl. 1–13 (2016). doi:10.1007/s00521-016-2186-y

  11. Chakraborty, J.; Verma, N.; Chhabra, R.: Wall effects in flow past a circular cylinder in a plane channel: a numerical study. Chem. Eng. Process. 43(12), 1529–1537 (2004)

    Article  Google Scholar 

  12. Golani, R.; Dhiman, A.: Fluid flow and heat transfer across a circular cylinder in the unsteady flow regime. Int. J. Eng. Sci. 3(3), 8–19 (2014)

    Google Scholar 

  13. Mahír, N.; Altaç, Z.: Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. Int. J. Heat Fluid Flow 29(5), 1309–1318 (2008)

    Article  Google Scholar 

  14. Posdziech, O.; Grundmann, R.: A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. J. Fluids Struct. 23(3), 479–499 (2007)

    Article  Google Scholar 

  15. Shi, J.-M.; Gerlach, D.; Breuer, M.; Biswas, G.; Durst, F.: Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder. Phys. Fluids 16(12), 4331–4345 (2004)

    Article  MATH  Google Scholar 

  16. Dey, P.; Sarkar, A.; Das, A.K.: Prediction of unsteady mixed convection over circular cylinder in the presence of nanofluid—a comparative study of ANN and GEP. J. Naval Archit. Mar. Eng. 12(1), 57–71 (2015). doi:10.3329/jname.v12i1.21812

    Article  Google Scholar 

  17. Carassale, L.; Freda, A.; Marrè-Brunenghi, M.: Effects of free-stream turbulence and corner shape on the galloping instability of square cylinders. J. Wind Eng. Ind. Aerodyn. 123, 274–280 (2013)

    Article  Google Scholar 

  18. Carassale, L.; Freda, A.; Marrè-Brunenghi, M.: Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners. J. Fluids Struct. 44, 195–204 (2014)

    Article  Google Scholar 

  19. Leontini, J.S.; Thompson, M.C.: Vortex-induced vibrations of a diamond cross-section: sensitivity to corner sharpness. J. Fluids Struct. 39, 371–390 (2013)

    Article  Google Scholar 

  20. Mandal, A.; Faruk, G.: An experimental investigation of static pressure distributions on a group of square or rectangular cylinders with rounded corners. J. Mech. Eng. 41(1), 42–49 (2010)

    Article  Google Scholar 

  21. Dey, P.; Das, A.: A utilization of GEP (gene expression programming) metamodel and PSO (particle swarm optimization) tool to predict and optimize the forced convection around a cylinder. Energy 95, 447–458 (2016)

    Article  Google Scholar 

  22. Dey, P.; Das, A.: Prediction and optimization of unsteady forced convection around a rounded cornered square cylinder in the range of Re. Neural Comput. Appl. 1–11 (2016). doi:10.1007/s00521-015-2168-5

  23. Dey, P.; Sarkar, A.; Das, A.K.: Development of GEP and ANN model to predict the unsteady forced convection over a cylinder. Neural Comput. Appl. 1-13 (2015). doi:10.1007/s00521-015-2023-8

  24. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  25. Kakaç, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13), 3187–3196 (2009)

    Article  MATH  Google Scholar 

  26. Eastman, J.; Choi, S.; Li, S.; Yu, W.; Thompson, L.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  27. Xuan, Y.; Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21(1), 58–64 (2000)

    Article  Google Scholar 

  28. Anoop, K.; Sundararajan, T.; Das, S.K.: Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. Heat Mass Transf. 52(9), 2189–2195 (2009)

    Article  MATH  Google Scholar 

  29. Dey, P.; Das, A.K.: Numerical analysis of characteristic of flow and heat transfer due to natural convection in a enclosure (square) using nano-fluid. In: Advances in Energy Conversion Technologies (ICAECT), pp. 92–98. IEEE (2014)

  30. Heris, S.Z.; Etemad, S.G.; Esfahany, M.N.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass Transf. 33(4), 529–535 (2006)

    Article  Google Scholar 

  31. Rea, U.; McKrell, T.; Hu, L.-W.; Buongiorno, J.: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int. J. Heat Mass Transf. 52(7), 2042–2048 (2009)

    Article  Google Scholar 

  32. Tiwari, R.K.; Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9), 2002–2018 (2007)

    Article  MATH  Google Scholar 

  33. Etminan-Farooji, V.; Ebrahimnia-Bajestan, E.; Niazmand, H.; Wongwises, S.: Unconfined laminar nanofluid flow and heat transfer around a square cylinder. Int. J. Heat Mass Transf. 55(5), 1475–1485 (2012)

  34. Sarkar, S.; Ganguly, S.; Biswas, G.: Mixed convective heat transfer of nanofluids past a circular cylinder in cross flow in unsteady regime. Int. J. Heat Mass Transf. 55(17), 4783–4799 (2012)

    Article  Google Scholar 

  35. Yacob, N.A.; Ishak, A.; Pop, I.; Vajravelu, K.: Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Res. Lett. 6(1), 1–7 (2011)

    Article  Google Scholar 

  36. Abu-Nada, E.; Oztop, H.F.: Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 30(4), 669–678 (2009)

    Article  Google Scholar 

  37. Sarkar, S.; Ganguly, S.; Dalal, A.: Buoyancy driven flow and heat transfer of nanofluids past a square cylinder in vertically upward flow. Int. J. Heat Mass Transf. 59, 433–450 (2013)

    Article  Google Scholar 

  38. Schlichting, H.; Gersten, K.; Gersten, K.: Boundary-Layer Theory. Springer, Berlin, Heidelberg (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, P., Das, A.k. Analysis of Fluid Flow and Heat Transfer Characteristics Over a Square Cylinder: Effect of Corner Radius and Nanofluid Volume Fraction. Arab J Sci Eng 42, 1687–1698 (2017). https://doi.org/10.1007/s13369-016-2276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2276-2

Keywords

Navigation