Skip to main content
Log in

Characterization of an Alkaline Thermostable Pectin Lyase from Newly Isolated Aspergillus niger _WHAK1 and Its Application on Fruit Juice Clarification

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Pectin lyase degrades pectic substances that are complex polysaccharides of middle lamella and primary cell walls of plants. In this study, alkaline thermostable pectin lyase from Aspergillus niger strain_WHAK1 was produced on wheat bran and citrus pectin in submerged culture. Pectin lyase was purified by ammonium sulfate fractionation, gel filtration and ion-exchange chromatography, and 76.5 purification fold was obtained. Optimum pH and temperature values of pectin lyase were 8.0 and 40°C at 60min, respectively. The enzyme was stable for 17 months at 4°C. Km and Vmax values were found to be 5.2mg/mL and 0.2(mmol/min)−1 mL, respectively. Molecular weight of pectin lyase was nearly 23.3 kDa. Effects on PL activity of metal ions (NaCl, KCl, CaCl2, MgCl2, CoCl2, CuCl2.H2O, FeCl3.6H2O, ZnSO4.7H2O, (NH4)2SO4, MnSO4), amino acids (l-tryptophan, l-cysteine hydrochloride monohydrate, l-arginine monohyd rate), ascorbic acid, citric acid monohydrate, EDTA and resorcinol were studied. The presence of FeCl3, CaCl2 and ascorbic acid significantly enhanced relative pectin lyase activity (%). The purified pectin lyase induced viscosity reduction in fruit juice samples, and it was effective for clarification of fruit juices. Pectin lyase showed substrate preference against fruit juice samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kashyap D.R. et al.: Applications of pectinases in commercial sector: a review. Bioresource Technol. 77, 215–227 (2001)

    Article  Google Scholar 

  2. Yadav S. et al.: Pectin lyase: a review. Process Biochem. 44, 1–10 (2009)

    Article  Google Scholar 

  3. Thakur B.R., Singh R.K., Handa A.K.: Chemistry and uses of pectin—a review. Crit. Rev. Food Sci. Nutr. 37, 47–73 (1997)

    Article  Google Scholar 

  4. Jayani R.S., Saxena S., Gupta R.: Microbial pectinolytic enzymes: a review. Process Biochem. 40, 2931–2944 (2005)

    Article  Google Scholar 

  5. Willats W.G.T., Knox P., Mikkelsen J.D.: Pectin: new insights into an old polymer are starting to gel. Trends Food Sci. Tech. 1, 97–104 (2006)

    Article  Google Scholar 

  6. Herron S.R. et al.: Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc. Natl. Acad. Sci. USA. 97, 8762–8769 (2000)

    Article  Google Scholar 

  7. Gummadi S.N., Panda T.: Purification and biochemical properties of microbial pectinases: a review. Process Biochem. 38, 987–996 (2003)

    Article  Google Scholar 

  8. Gummadi S.N., Kumar D.S.: Microbial pectic transeliminases. Biotechnol. Lett. 27, 451–458 (2005)

    Article  Google Scholar 

  9. Alkorta I. et al.: Immobilization of pectin lyase from Penicillium italicum by covalent binding to nylon. Enzyme Microb. Technol. 18, 141–146 (1996)

    Article  Google Scholar 

  10. Whitaker J.R.: Microbial pectinolytic enzymes. In: Fogarty, W.M., Kelly, C.T. (eds) Microbial Enzymes and Biotechnology., pp. 133–176. Elsevier Science Ltd., London (1990)

    Chapter  Google Scholar 

  11. Friedrich J., Cimerman A., Steiner W.: Concomitant biosynthesis of Aspergillus niger pectolytic enzymes and citric acid on sucrose. Enzyme Microb. Technol. 16, 703–707 (1994)

    Article  Google Scholar 

  12. Lang C., Dornenburg H.: Perspectives in the biological function and the technological application of polygalacturonases. Appl. Microbiol. Biot. 53, 366–375 (2000)

    Article  Google Scholar 

  13. Naidu G.S.N., Panda T.: Application of response surface methodology to evaluate some aspects on stability of pectolytic enzymes from Aspergillus niger. Biochem. Eng. J. 2, 71–77 (1998)

    Article  Google Scholar 

  14. Kapoor M. et al.: Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmerianivea) and sunn hemp (Crotalaria juncea) bast fibres. Process Biochem. 36, 803–807 (2001)

    Article  Google Scholar 

  15. Taragano V.M., Pelosof A.M.R.: Application of Doehlert design for water activity, pH and fermentation time, optimization for Aspergillus niger pectinolytic activity, production in solid state and submerged fermentation. Enzyme Microb. Technol. 25, 411–419 (1999)

    Article  Google Scholar 

  16. Raeder P., Broda U.: Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1, 17–20 (1985)

    Article  Google Scholar 

  17. Felsenstein J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)

    Article  Google Scholar 

  18. Nei M., Kumar S.: Molecular Evolution and Phylogenetics. Oxford University Press, New York (2000)

    Google Scholar 

  19. Tamura K. et al.: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013)

    Article  Google Scholar 

  20. Maiorano, A.E.: Produção de pectinase por fermentação em estado sólido. PhD Thesis. Escola Politécnica da Universidade de São Paulo. São Paulo, São Paulo, Brasil (1990)

  21. Temizkan, G.; Yilmazer, S.; Ozturk, M.; Ari, S.; Ertan, H.; Topal-Sarikaya, A.: Arda, N. Moleküler Biyolojide Kullanılan Yöntemler. In: Temizkan, G., Arda, N. (eds.) Proteinlerin  İzolasyonu, Analizi, Saflaştırılması, pp. 161–273. İstanbul, Turkey (2008)

  22. Albersheim P.: Pectin lyase from fungi. Method Enzymol. 8, 628–631 (1966)

    Article  Google Scholar 

  23. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  24. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 15, 680–685 (1970)

    Article  Google Scholar 

  25. Rai P. et al.: Optimizing pectinase usage in pretreatment of mosambi juice for clarification by response surface methodology. J. Food Eng. 64, 340–397 (2004)

    Article  Google Scholar 

  26. Demir N. et al.: The use of commercial pectinase in fruit juice industry. Part 3: Immobilized pectinase for mash treatment. J. Food Eng. 47, 275–280 (2001)

    Article  Google Scholar 

  27. Brumano M.H.N. et al.: Production of pectin lyase by Penicillium griseoroseum as a function of the inoculum and culture conditions. World J. Microb. Biot. 9, 225–228 (1993)

    Article  Google Scholar 

  28. Pedrolli D.A., Carmona E.C.: Pectin lyase from Aspergillus giganteus: comparative study of productivity of submerged fermentation on citrus pectin and orange waste. Appl. Biochem. Microbiol. 45, 610–616 (2009)

    Article  Google Scholar 

  29. Yadav S. et al.: Purification and characterisation of an acidic pectin lyase produced by Aspergillus ficuum strain MTCC 7591 suitable for clarification of fruit juices. Ann. Microbiol. 58, 61–65 (2008)

    Article  Google Scholar 

  30. Sathiyaraj G. et al.: Screening and optimization of pectin lyase and polygalacturonase activity from ginseng pathogen Cylindrocarpon Destructans. Braz. J. Microbiol. 42, 794–806 (2011)

    Article  Google Scholar 

  31. Yadav S. et al.: Purification and characterization of an alkaline pectin lyase from Aspergillus flavus. Process Biochem. 43, 547–552 (2008)

    Article  Google Scholar 

  32. Acuńa-Argüelles M.E. et al.: Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid fermentation. Appl. Microbiol. Biotechnol. 43, 808–814 (1995)

    Article  Google Scholar 

  33. Pedrolli D.A., Carmona E.C.: Purification and characterization of a unique pectin lyase from Aspergillus giganteus able to release unsaturated monogalacturonate during pectin degradation. Enzyme Res. 2014, 1–7 (2014)

    Article  Google Scholar 

  34. Angayarkanni J. et al.: Improvement of tea leaves fermentation with Aspergillus spp. pectinase. J. Biosci. Bioeng. 94, 299–303 (2002)

    Article  Google Scholar 

  35. Yadav S. et al.: Purification and Characterization of Pectin Lyase Produced by Aspergillus terricola and its Application in Retting of Natural Fibers. Appl. Biochem. Biotechnol. 159, 270–283 (2009)

    Article  Google Scholar 

  36. Yadav S. et al.: Purification and biochemical characterization of an alkaline pectin lyase from Fusarium decemcellulare MTCC 2079 suitable for Crotolaria juncea fiber retting. J. Basic Microb. 53, 1–9 (2013)

    Article  Google Scholar 

  37. Alana A., Llama M.J., Serra J.L.: Purification and some properties of the pectin lyase from Penicillium italicum FEBS Lett. 280, 335–340 (1991)

    Article  Google Scholar 

  38. Chen W.C. et al.: Purification and characterization of a pectin lyase from Pythium splendens infected cucumber fruits. Bot. Bull. Bcad. Sinica. 39, 181–186 (1998)

    Google Scholar 

  39. Delgado L. et al.: Pectin lyase from Aspergillus sp. CH-Y-1043. Appl. Microbiol. Biot. 39, 515–519 (1993)

    Article  Google Scholar 

  40. Kumar Y.S. et al.: Pectinase production from mango peel using Aspergillus foetidus and its application in processing of mango juice. Food Biotechnol. 26, 107–123 (2012)

    Article  Google Scholar 

  41. Yadav S., Shastri N.V.: Partial purification and characterization of a pectin lyase produced by Penicillium oxalicum in solid state fermentation. Indian J. Biotechnol. 4, 501–505 (2005)

    Google Scholar 

  42. Sakiyama C.C. et al.: Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett. Appl. Microbiol. 33(2), 117–121 (2001)

    Article  Google Scholar 

  43. Hamdy S.H.: Purification and characterization of the pectin lyase produced by Rhizopus oryzae grown on orange peels. Ann. Microbiol. 55, 205–211 (2005)

    Google Scholar 

  44. Busto M.D. et al.: Preparation and properties of an immobilized pectin lyase for the treatment of fruit juices. Bioresour. Technol. 97, 1477–1483 (2006)

    Article  Google Scholar 

  45. Panda T., Nair S.R., Kumar M.P.: Regulation of synthesis of the pectolytic enzymes of Aspergillus niger. Enzyme Microb. Technol. 34, 466–473 (2004)

    Article  Google Scholar 

  46. Sarioglu K. et al.: The use of commercial pectinase in the fruit juice industry, part 2: Determination of the kinetic behaviour of immobilized commercial pectinase. J. Food Eng. 47, 271–274 (2001)

    Article  Google Scholar 

  47. Beg Q.K. et al.: Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biotechnl. 24, 396–402 (2000)

    Article  Google Scholar 

  48. Losonczi A. et al.: Role of the EDTA chelating agent in bioscouring of cotton. Text. Res. J. 75, 411–417 (2005)

    Article  Google Scholar 

  49. Dongowski G., Sembries S.: Effects of commercial pectolytic and cellulolytic enzyme preparations on the apple cell wall. J. Agric. Food Chem. 49, 4236–4242 (2001)

    Article  Google Scholar 

  50. Bootten T.J. et al.: Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vignaradiata L.) occur in different domains: a new model for xyloglucan–cellulose interactions in the cell wall. J. Exp. Bot. 55, 571–583 (2004)

    Article  Google Scholar 

  51. Sin H.N. et al.: Optimization of enzymatic clarification of sapodilla juice using response surface methodology. J. Food Eng. 73, 313–319 (2006)

    Article  Google Scholar 

  52. Kilara A.: Enzymes and their uses in the processed apple industry: a review. Process Biochem. 23, 35–41 (1982)

    Google Scholar 

  53. Ishii S., Yokotsuka T.: Susceptibility of Fruit Juice to Enzymatic Clarification by Pectin Lyase and Its Relation to Pectin in Fruit Juice. J. Agric. Food Chem. 21, 269–272 (1973)

    Article  Google Scholar 

  54. Esawy M.A. et al.: Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydr. Polym. 92, 1463–1469 (2013)

    Article  Google Scholar 

  55. Sandri I.G. et al.: Use of pectinases produced by a new strain of Aspergillus niger for the enzymatic treatment of apple and blueberry juice. LWT-Food Sci. Technol. 51, 469–473 (2013)

    Article  Google Scholar 

  56. Maktouf S. et al.: Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration. Food Bioprod. Process. 92, 14–19 (2014)

    Article  Google Scholar 

  57. Vijayanand P., Kulkarni S.G., Prathibha G.V.: Effect of pectinase treatment and concentration of litchi juice on quality characteristics of litchi juice. J. Food Sci. Technol. 47, 235–239 (2010)

    Article  Google Scholar 

  58. Sagu S.T. et al.: Optimization of low temperature extraction of banana juice using commercial pectinase. Food Chem. 151, 182–190 (2014)

    Article  Google Scholar 

  59. Alvarez S. et al.: Influence of depectinization on apple juice ultrafiltration. Colloids Surf. A. 138, 377–382 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ozmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poturcu, K., Ozmen, I. & Biyik, H.H. Characterization of an Alkaline Thermostable Pectin Lyase from Newly Isolated Aspergillus niger _WHAK1 and Its Application on Fruit Juice Clarification. Arab J Sci Eng 42, 19–29 (2017). https://doi.org/10.1007/s13369-016-2041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2041-6

Keywords

Navigation