Skip to main content
Log in

Effect of Adhesive Type on the Measurement of Modulus of Elasticity Using Electrical Resistance Strain Gauges

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study aims to point out the importance of adhesive type on strain measurement and examine the accuracy of the modulus of elasticity determination using the electrical resistance strain gauges glued on solid materials, i.e., rock and concrete. For this purpose, the effect of adhesive type on the strain gauge applications and measurements was investigated as there is no standard adhesive type for such uses in standards. Four different adhesives were used in experiments, three of which (cyanoacrylate, polyester and epoxy-based adhesive) can be widely seen in the literature. Ordinary Portland cement paste was prepared to obtain homogeneous material for sensitive measurements and comparisons. Additionally, rock core samples were tested in this study. Experimental results indicated that strain gauges used with same adhesive gave consistent deformation values for the same type of rock and paste specimens. However, remarkable deformation measurement differences up to 110 % were obtained for same paste and rock specimens when different adhesives were used. Numerical analysis via finite element method was also carried out to examine the type of adhesive and interlayer thickness. Up to 51 % strain loss obtained through the numerical models for the adhesive interlayer also pointed out that adhesive type must be taken into account in experimental studies since there is no adhesive guide for users in standards. According to the obtained results from experimental and numerical analyses, cyanoacrylate suggested the most accurate results among the adhesives owing to the thin and homogenous adhesive interlayer between the strain gauge and specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young T.A.: Course of Lectures on Natural Philosophy and the Mechanical Arts. Joseph Johnson, London (1807)

    Book  Google Scholar 

  2. Bell J.F.: The Experimental Foundations of Solid Mechanics. Handbuch der Physik VIa/I. Springer, Berlin (1971)

    Google Scholar 

  3. Timoshenko S.P.: History of Strength of Materials. Dover, New York (1983)

    Google Scholar 

  4. Gercek H.: Poisson’s ratio values for rocks. Int. J. Rock Mech. Min. Sci. 44, 1–13 (2007)

    Article  Google Scholar 

  5. Ye J.H., Wu F.Q., Zhang Y., Ji H.G.: Estimation of the bi-modulus of materials through deformation measurement in a Brazilian disk test. Int. J. Rock Mech. Min. Sci. 52, 122–131 (2012)

    Article  Google Scholar 

  6. Komurlu, E.; Kesimal, A.: New engineering materials for underground constructions. In: Proceedings of 16th International Metallurgy and Materials Congress of Turkey, Istanbul, pp. 307–319 (2012)

  7. Ajalloeian R., Mohammadi M.: Estimation of limestone rock mass deformation modulus using empirical equations. Bull. Eng. Geol. Environ. 73, 541–550 (2014)

    Article  Google Scholar 

  8. Komurlu E., Kesimal A.: Evaluation of indirect tensile strength of rocks using different types of jaws. Rock Mech. Rock Eng. 48, 1723–1730 (2015)

    Article  Google Scholar 

  9. Komurlu, E.; Kesimal, A.: Jaw effects on indirect tensile strength test disc failure mechanism. In: Proceedings of 7th Asian Rock Mechanics Symposium, Seoul, pp. 624–637 (2012)

  10. Fahimifar A., Malekpour M.: Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts. Bull. Eng. Geol. Environ. 71, 269–283 (2012)

    Article  Google Scholar 

  11. Hoek E.: Rock Mechanics—An Introduction for the Practical Engineer. Imperial College of Science and Technology, London (1965)

    Google Scholar 

  12. Ozdogan M.: Determination of elastic constants of rock and classification of intact and in-situ rock. J. Chamb. Min. Eng. Turk. 24, 41–48 (1985)

    Google Scholar 

  13. Kahraman S.: Performance analysis of drilling machines using rock modulus ratio. J. South. Afr. Inst. Min. Metall. 103, 515–522 (2003)

    Google Scholar 

  14. Komurlu, E.: Effects of rock and granular material horizontal stresses on support design. M.Sc. thesis, Karadeniz Technical University Mining Engineering Department, Trabzon (2012)

  15. Brotons V., Tomas R., Ivorra S., Grediaga A.: Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julian’s stone. Bull. Eng. Geol. Environ. 73, 791–799 (2014)

    Article  Google Scholar 

  16. Komurlu, E.; Kesimal, A.: Effect of polymer fiber on the shotcrete tunnel support. In: Proceedings of RockMec’2011 Xth Regional Rock Mechanics Symposium, Ankara, pp. 47–55 (2011)

  17. Vasuki B., Umapathy M., Senthilkumarr A.R.: Uncertainty analysis of strain gage circuits: interval method and interval algorithm. Int. J. Smart Sens. Intell. Syst. 2, 477–489 (2009)

    Google Scholar 

  18. Feder, B.J.: Arthur C Ruge, Inventor of Vital stress gauge, dies at 94. The New York Times, 4 April (2000)

  19. Ulusay R., Gokceoglu C., Binal A.: Kaya Mekaniği Laboratuvarı Deneyleri. JMO, Ankara (2001)

    Google Scholar 

  20. Ocak I.: Estimating the modulus of elasticity of the rock material from compressive strength and unit weight. J. South. Afr. Inst. Min. Metall. 108, 621–626 (2008)

    Google Scholar 

  21. Ocak I., Seker S.E.: Estimation of elastic modulus of intact rocks by artificial neural network. Rock Mech. Rock Eng. 45, 1045–1057 (2012)

    Article  Google Scholar 

  22. Roberts D.P.: Numerical simulation of shear fracture evolution in laboratory scale specimens. J. South. Afr. Inst. Min. Metall. 112, 685–695 (2013)

    Google Scholar 

  23. Howarth D.F.: Apparatus to determine static and dynamic elastic moduli. Rock Mech. Rock Eng. 17, 255–264 (1984)

    Article  Google Scholar 

  24. Ozcelik Y., Bayram F., Yasitli N.E.: Prediction of engineering properties of rocks from microscopic data. Arab. J. Geosci. 6, 3651–3668 (2013)

    Article  Google Scholar 

  25. Acar, M.C.; Gündüz, Z.; Kara, H.B.: Modulus Of elasticity determination of rocks using compressometer, strain gauge and LVDT. In: Proceedings of ACE 2014 11’th International Congress on Advances in Civil Engineering, Istanbul, pp. 1–6 (2014)

  26. ISRM: The blue book—the complete ISRM suggested methods for rock characterisation, testing and monitoring: 1974–2006. Ulusay, R., Hudson, J.A. (eds.) Turkish National Group of ISRM, Ankara (2007)

  27. ASTM D7012-10: Standard test method for compressive strength and elasticity moduli of intact rock core specimens under varying states of stress and temperatures. ASTM International, West Conshohocken (2010)

  28. TS 2030: Turkish Standard for determination of elastic module and Poissons ratio of rocks in uniaxial compression. Turkish Standard Institution, Ankara (1975)

  29. AS 1012.17-1997: Determination of the static chord modulus of elasticity and Poisson’s ratio of concrete specimens. Standards Australia, Sydney (1997)

  30. Lorenzis L.D., Miller B., Nanni A.: Bond of FRP laminates to concrete. ACI Mater. J. 98, 256–264 (2001)

    Google Scholar 

  31. Sengun N.: Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arab. J. Geosci. 7, 5543–5551 (2014)

    Article  Google Scholar 

  32. Ansari F., Libo Y.: Mechanics of bond and interface shear transfer in optical fiber sensors. J. Eng. Mech. 124, 385–394 (1998)

    Article  Google Scholar 

  33. Cammarata R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  34. Jiang Q., Zhao D.S., Zhao M.: Size-dependent interface energy and related interface stress. Acta Mater. 49, 3143–3147 (2001)

    Article  Google Scholar 

  35. Hutchinson W.: Stress and Failure Modes in Thin Films and Multilayers. Technical University of Denmark, Copenhagen (1996)

    Google Scholar 

  36. TML: Adhesive products (2013). http://www.tml.jp/e/product/strain_gauge/adhesives_list/#a1

  37. Park J.W., Eagar T.W.: Strain Energy Release in Ceramic-to-Metal Joints with Patterned Interlayers. Scr. Mater. 50, 555–559 (2004)

    Article  Google Scholar 

  38. Becker, M.: Cyanoacrylate: everything you need to know (2010). http://www.woodworkersjournal.com/

  39. Senchenya N.G., Guseva T.I., Golobov Y.G.: Cyanoacrylate based adhesives. Polym. Sci. Ser. C 49, 235–239 (2007)

    Article  Google Scholar 

  40. Troughton M.J.: Handbook of Plastic Joining: A Practical Guide. William Andrew, New York (2008)

    Google Scholar 

  41. Comyn, J.: What are adhesives and sealants and how do they work?. In: Adams, (ed.) Adhesive Bonding Science Technology and Applications, Woodhead Publishing, Abington (2005)

  42. Gillette, O.: Room temperature strain gauge systems. In: Hannah, Reed, (eds.) Strain Gauge User’s Handbook, Elsevier, London (1992)

  43. Willam, K.J.; Warnke, E.P.: Constitutive model for the triaxial behaviour of concrete. IABSE, Report no. 19, Bergamo, pp. 1–30 (1974)

  44. Akfix E350: Epoxy adhesive technical data sheet, Istanbul (2013). http://www.akfix.com/sayfalar.asp?LanguageID=1&cid=2&id=12&b=detay

  45. Akfix C703: Super glue technical data sheet, Istanbul (2013). http://www.akfix.com/sayfalar.asp?LanguageID=1&cid=2&id=12&b=detay

  46. Jones M.R.: Deformation Theory of Plasticity. Bull Ridge Publishing, Blacksburg (2009)

    Google Scholar 

  47. Liao L., Huang C., Sawa T.: Effect of adhesive thickness, adhesive type and scarf angle on the mechanical properties of scarf adhesive joints. Int. J. Solids Struct. 50, 4333–4340 (2013)

    Article  Google Scholar 

  48. Kinloch A.J.: Adhesion and Adhesives. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  49. Zhao Y.: Analytical modeling for stress–strain curve of a porous NiTi. J. Appl. Mech. 74, 291–297 (2007)

    Article  MATH  Google Scholar 

  50. Paul K.C., Pal A.K., Ghosh A.K., Chakraborty N.R.: Measurements of elastic properties of some coating materials. Surf. Coat. Int. B 87, 47–50 (2004)

    Article  Google Scholar 

  51. Turusov R.A., Kuperman A.M.: Elastic properties of thin adhesive interlayers. Polym. Sci. Ser. D 7, 1–8 (2014)

    Article  Google Scholar 

  52. Komurlu, E.; Kesimal, A.; Colak, U.: Polyurea type thin spray-on liner coating to prevent rock bolt corrosion. In: Proceedings of 8th Asian Rock Mechanics Symposium, Sapporo, pp. 1389–1397 (2014)

  53. Komurlu, E.; Kesimal, A.: Using sprayed polymer as tunnel support. In: Proceedings of 7th Asian Rock Mechanics Symposium, Seoul, pp. 1486–1499 (2012)

  54. Komurlu, E.; Kesimal, A.: Improved performance of rock bolts using sprayed polyurea coating. Rock Mech. Rock Eng. (2014). doi:10.1007/s00603-014-0696-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eren Komurlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komurlu, E., Cihangir, F., Kesimal, A. et al. Effect of Adhesive Type on the Measurement of Modulus of Elasticity Using Electrical Resistance Strain Gauges. Arab J Sci Eng 41, 433–441 (2016). https://doi.org/10.1007/s13369-015-1837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1837-0

Keywords

Navigation