Skip to main content
Log in

Employing a Central Composite Rotatable Design to Define and Determine Significant Toxic Levels of Heavy Metals on Shewanella putrefaciens in Microbial Fuel Cell

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) are a unique technology that takes advantage of bacterial metabolism to generate electricity and remove chemical oxygen demand (COD) from organic pollutants. Existence of heavy metals in fuel affects vitally bacterial activity in MFC. Present study aimed to define the negative effect of three most toxic heavy metals, namely mercury (HgCl2), lead (Pb(NO3)2), and cadmium (CdCl2), on the activity of bacterium Shewanella putrefaciens with respect to electricity generation and COD removal in MFC from food industry wastewater. A central composite rotatable design was employed to determine the significant toxic levels of used heavy metals. The results indicted that the main effect of HgCl2, Pb(NO3)2, and CdCl2 was −62.17, −58.55, and −31.65 %, respectively, with respect to electricity generation, as well as −34.32, −32.25, and −18.95 %, respectively, with respect to COD removal, at 95 % confidence. The statistical design determined the significant toxic levels for each factor of heavy metals alone as (mg/100 mL) HgCl2 23.45, Pb(NO3)2 34.38, and CdCl2 48.31, with respect to electricity generation, as well as 26.34, 31.84, and 52.56, respectively, with regard to COD removal at 95 % confidence. The coefficient of determination (R2) was found to be 0.93 and 0.98 for electricity generation and COD removal, respectively. The confirmatory experiments showed closeness of predicted and observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pant, D., Gilbert Van, B., Ludo, D., Karolien, V.: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioreso. Technol. 10, 1533–1543 (2010)

    Article  Google Scholar 

  2. Pant, D., Anoop, S., Gilbert Van, B., Stig, I.O., Poonam, S.N., Ludo, D., Karolien, V.: Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2(4), 1248–1263 (2012)

    Article  Google Scholar 

  3. Pepper, I.L., Gerba, C.P.: Environmental Microbiology. 2nd edn. Elsevier, San Diego (2005)

    Google Scholar 

  4. Naaz, S., Pandey, S.N.: Effect of industrial wastewater on heavy metals accumulation, growth and biochemical responses of lettuce (Lactuca Sativa L.). J. Environ. Biol. 31, 273–276 (2010)

    Google Scholar 

  5. Fitzgerald, W.F., Lamborg, C.H.: Geochemistry of mercury in the environment. In: Sherwood Lollar, B., Holland, H.D., Turekian, K.K. (eds.) Environmental Geochemistry, vol. 9, pp. 107–148. Elesvier–Pergamon, Oxford (2003)

  6. Jadhav, U.U., Hocheng, H.: A review of recovery of metals from industrial waste. J. Achiev. Mater. Manuf. Eng. 52(2), 159–167 (2012)

    Google Scholar 

  7. Kim, B.H., Kim, H.J., Hyun, M.S., Park, D.H.: Direct electrode reaction of Fe(lI1)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9(2), 127–131 (1999)

    Google Scholar 

  8. Kim, H.J., Hyun, M.S., Chang, I.S., Kim, B.H.: A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9(3), 365–367 (1999)

    Google Scholar 

  9. Kim, H.J., Park, H.S., Hyun, M.S., Chang, I.S., Kim, M., Kim, B.H.: A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30(2), 145–152 (2002)

    Article  Google Scholar 

  10. Park, D.H., Zeikus, J.G.: Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefucians. Appl. Microbiol. Biotechnol. 59, 58–61 (2002)

    Article  Google Scholar 

  11. Park, D.H., Zeikus, J.G.: Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioengin. 81(3), 348–355 (2003)

    Article  Google Scholar 

  12. Ringeisen, B.R., Henderson, E., Wu, P.K., Pietron, J., Ray, R., Little, B., Biffinger, J.C., Jones-Meehan, J.M.: High power density from a miniature microbial fuel cell using Shewanella oneidensis DSPIO. Environ. Sci. Technol. 40(8), 2629–2634 (2006)

    Article  Google Scholar 

  13. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2001)

  14. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A.: Response surface methodology (RSM) as a tool for optimization in analytical. Talanta 76, 965–977 (2008)

    Article  Google Scholar 

  15. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process End Product Optimization Using Designed Experiments. 2nd edn. Wiley, New York (2002)

    Google Scholar 

  16. Vargas, A.M.M., Garcia, C.A., Reis, E.M., Lenzi, E., Costa, W.F., Almeida, V.C.: NaOH-activated carbon from flamboyant (Delonix regia) pods: Optimization of preparation conditions using central composite rotatable design. Chem. Eng. J. 162, 43–50 (2010)

    Article  Google Scholar 

  17. Auta, M., Hameed, B.H.: Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chem. Eng. J. 175, 233–243 (2011)

    Article  Google Scholar 

  18. Gan, C.Y., Latiff, A.A.: Optimization of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem. 124, 1277–1283 (2011)

    Article  Google Scholar 

  19. Prasad, K.N., Hassan, F.A., Yang, B., Kong, K.W., Ramanan, R.N., Azlan, A.: Response surface optimization for the extraction of phenolic compounds and antioxidant capacities of underutilized Mangifera pajang Kosterm. Peels. Food Chem. 128, 1121–1127 (2011)

    Article  Google Scholar 

  20. Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. 13(1), 1–38 (1951)

    MathSciNet  MATH  Google Scholar 

  21. Liu, H., Logan, B.E.: Electricity generation using an air–cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38, 4040–4046 (2004)

    Article  Google Scholar 

  22. Clesceri, L.S., Greenberg, A.E., Trussell, R.R.: Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), Washington (1989)

    Google Scholar 

  23. Wei, F.S.: Water andWastewater Monitoring Analysis Method. Publishing House of Environmental Science of China, Beijing (2002)

  24. Chen, J., Tao, X., Xu, J., Zhang, T., Liu, Z.: Biosorption of lead cadmium and mercury by immobilized microcystis aeruginosa in a column. Biochemistry 10(12), 3675–3679 (2005)

    Google Scholar 

  25. Logan, B.E.: Microbial Fuel cells. Wiley, Hoboken (2008)

    Google Scholar 

  26. Jiang, J., Zhao, Q., Zhang, J., Zhang, G., Lee, D.: Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Biores. Technol. 100, 5808–5812 (2009)

    Article  Google Scholar 

  27. Vainionpaa, J., Malkki, Y.: Extrusion Cooking in the Manufacture of Intermediate Moisture Food and Feed. Singapore Institute of Food Science and Technology, Singapore (1987)

    Google Scholar 

  28. Martin-Gil, J., Ramos-Sanchez, M.C., Martin-Gil, F.J.: Shewanella putrefaciens in a fuel-in water emulsion from the prestige oil spill. Antonie Van Leeuwenhoek 86(3), 283–285 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Nasser Zuheir Al-Shehri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shehri, A.N.Z. Employing a Central Composite Rotatable Design to Define and Determine Significant Toxic Levels of Heavy Metals on Shewanella putrefaciens in Microbial Fuel Cell. Arab J Sci Eng 40, 93–100 (2015). https://doi.org/10.1007/s13369-014-1477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1477-9

Keywords

Navigation