Skip to main content

Advertisement

Log in

Predicting the Exhaust Emissions of a Spark Ignition Engine Using Adaptive Neuro-Fuzzy Inference System

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a fuzzy logic-based prediction method to reveal the performance and emission characteristics of a single cylinder spark ignition (SI) engine, which uses different fuel mixtures (gasoline–water macro-emulsions, which contains isopropanol). Adaptive neuro-fuzzy inference system, ANFIS, was used to determine some characteristic parameters due to the combustion, such as exhaust emissions (CO, CO2, HCs). Experimental data such as engine power, torque, engine speed, brake mean effective pressure, brake specific fuel consumption were used as training and checking inputs for the ANFIS model to provide a predictive algorithm. The main purpose of this study is to provide a reliable model that can reveal different performance characteristics, which can be obtained from various gasoline–water macro-emulsions and doing this by the elimination of new experiments. The preliminary results show that an acceptable ANFIS model can also be used in experimental design procedures, by providing quick data handling and the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Isin, O.: The experimental investigation of the gasoline–water emulsion fuels—their effect on spark ignition engine performance and exhaust emissions. Ph.D. Thesis, Dept. of Mech. Eng., Yildiz Technical University, Turkey (2000)

  2. Isin, O.; Ergenc, A.T.; Ozkan, M.; Deniz, O.: The experimental investigation of isopropanol addition to the gasoline-water motor fuel blends on SI engine performance. 2nd Int. Conf. Appl. Therm. Proc. ATC’05 Istanbul, Turkey, pp. 425–429 (2005)

  3. Peters, B.; Stebar, R.: Water–gasoline fuels—their effect on spark ignition engine emissions and performance. SAE Tech. Pap. 760547. doi:10.4271/760547 (1976)

  4. Tsao, K.; Wang, C.; Miller, E.: Performance of gasoline-water fuel in a modified SI engine. SAE Tech. Pap. 841399, doi:10.4271/841399 (1984)

  5. Togun, N.; Baysec, S.: Genetic programming approach to predict torque and brake specific fuel consumption of a gasoline engine. Appl. Energ. 87(11), 3401–3407 (2010)

    Article  Google Scholar 

  6. Gabrys, B.; Howlett, R.J.; Jain, L.C.: Fuzzy and neuro-fuzzy techniques for modelling and control. Lect. Notes in Comp. Sci. 4251, 1206–1215. doi:10.1007/11892960_145 (2006)

  7. Nguyen, H.H.; A Neural Fuzzy Approach to Modelling the Thermal Behavior of Power Transformers. MEng. Thesis, Sch. of Electrical Eng., Victoria University, Australia (2007)

  8. Lee, S.H.; Howlett, R.J.; Walters, S.D.; Crua, C.: Fuzzy logic and neuro-fuzzy modelling of diesel spray penetration. Lect. Notes in Comp. Sci. 3682, 642–650. doi:10.1007/11552451_88 (2005)

  9. Gopalakrishnan K.; Mudgal A.;Hallmark S.: Neuro-fuzzy approach to predictive modeling of emissions from biodiesel powered transit buses. Transport 26(4), 344–352 (2011)

    Article  Google Scholar 

  10. Zhang, Q.; Tian, D.: Study of cws/diesel dual fuel engine emissions by means of rbf neural network. Chengdu, China. doi:10.1109/APPEEC.2010.5449248 (2010)

  11. Obodeh, O.; Ajuva, C.I.:Evaluation of artificial neural network performance in predicting diesel engine NOx emissions. Eur. J. Sci. Res. 33(4), 642–653 (2009)

    Google Scholar 

  12. Karri, V.; Ho, T.N.: Predictive models for emission of hydrogen powered car using various artificial intelligent tools. Neural Comp. Appl. 18, 469–476. doi:10.1007/s00521-008-0218-y (2009)

  13. Ghobadian, B.; Rahimi, H.; Nikbakht, A.M.; Najafi, G.; Yusaf, T.F.: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renew. Energ. 34(4), 976–982. doi:10.1016/j.renene.2008.08.008 (2009)

  14. Yusaf, T.F.; Buttsworth, D.R.; Saleh, K.H.; Yousif, B.F.: CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network. Appl. Energ. 87, 1661–1669. doi:10.1177/0957650911402546 (2010)

    Google Scholar 

  15. Kiani, M.K.D.; Ghobadian, B.; Tavakoli, T.; Nikbakht, A.M.; Najafi, G.: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol–gasoline blends. Energ. 35, 65–69. doi:10.1016/j.energy.2009.08.034 (2010)

    Google Scholar 

  16. Sayin, C.; Ertunc, H.M.; Hosoz, M.; Kilicaslan, I.; Canakci, M.: Performance and exhaust emissions of a gasoline engine using artificial neural network. Appl. Therm. Eng. 27, 46–54. doi:10.1016/j.applthermaleng.2006.05.016 (2007)

    Google Scholar 

  17. Yucesu, H.S.; Sozen, A.; Topgul, T.; Arcaklioglu, E.: Comparative study of mathematical and experimental analysis of spark ignition engine performance used ethanol–gasoline blend fuel. Appl. Therm. Eng. 27, 358–368 (2007)

    Article  Google Scholar 

  18. Arcaklioglu, E.; Celikten, I.: A diesel engine’s performance and exhaust emissions. Appl. Energ. 80, 11–22. doi:10.1016/j.apenergy.2004.03.004 (2005)

    Google Scholar 

  19. Tutuncu, K.; Allahverdi, N.: Reverse modeling of a diesel engine performance by FCM and ANFIS. Int. Conf. Comp. Sys. Tech. CompSysTech’07. doi:10.1145/1330598.1330634 (2007)

  20. Al-Hinti, I.; Samhouri, M.; Al-Ghandoor, A.; Sakhrieh, A.: The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach. Appl. Energ. 86(1), 113–121 (2009)

    Article  Google Scholar 

  21. Li, H.; Chen, C.L.P.; Huang, H.P.: Fuzzy Neural Intelligent Systems: Mathematical Foundations and the Applications in Engineering. CRC Press, ISBN 0849323606 (2000)

  22. Jang, J.S.R.; Sun, C.: Neuro-fuzzy modelling and control. Proc IEEE 83(3), 378–407 (1995)

    Article  Google Scholar 

  23. Kalogirou, S.A.: Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energ. Combust. 29, 515–556 (2003)

    Article  Google Scholar 

  24. Jang, J.S.R.: Input selection for ANFIS learning. Fuzz Syst. 2, 1493–1499 doi:10.1109/FUZZY.1996.552396 (1996)

  25. Rezaeeian, A.; Koma, A.Y.;Shasti, B.; Doosthoseini, A.: ANFIS modeling and feedforward control of shape memory alloy actuators. Int. J. Math. Mod. Meth. Appl. Sci. 2(2), 228–235 (2008)

    Google Scholar 

  26. Sivara, O.; Brevern, P.: GUI based ANFIS modeling: backpropagation optimization method for CO2 laser machining. Int. J. Intell. Inf. Tech. Appl. 2(4), 191–198 (2009)

    Google Scholar 

  27. Matlab, Documentation files. http://www.mathworks.com/help/toolbox/nnet/. Accessed 20 November 2011 (2011)

  28. Jain, S.; Khare, M.: Adaptive neuro-fuzzy modelling for prediction of ambient CO concentration at urban intersections and roadways. Air Qual Atmos. Health, 3, 203–212. doi:10.1007/s11869-010-0073-8 (2010)

  29. Jassar, S.; Lian, Z.; Zaiyi, L.; Ng, K.L.R.: Parameter selection for training process of neuro-fuzzy systems for average air temperature estimation. Mechatr. Autom. ICMA 09, China. doi:10.1109/ICMA.2009.5246537 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Uzunsoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isin, O., Uzunsoy, E. Predicting the Exhaust Emissions of a Spark Ignition Engine Using Adaptive Neuro-Fuzzy Inference System. Arab J Sci Eng 38, 3485–3493 (2013). https://doi.org/10.1007/s13369-013-0637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0637-7

Keywords

Navigation