Skip to main content
Log in

Oxidized Multiwalled Carbon Nanotubes as Adsorbents for Kinetic and Equilibrium Study of Removal of 5-(4-Dimethyl Amino Benzylidene)Rhodanine

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The oxidized multiwalled carbon nanotube was used as efficient adsorbent for the adsorption of 5-(4-dimethyl benzylidene amino) rhodanine (DMBAR) from aqueous solutions. The effect of solution pH, initial dye concentration contact time, temperature and sorption time on DMBAR removal ability was studied. The equilibrium sorption isotherms have been analyzed using different model such as Freundlich, Langmuir, Tempkin and Dubinin–Radushkevich models. The experimental data well fitted with Freundlich and Langmuir isotherms with correlation coefficients more than 0.97 and adsorption capacity of 15.52 mg/g. The apparent calculated thermodynamic parameters (ΔH 0 = 24.592, 24.285, 15.954 Kj/mol, ΔS 0 = 118.581, 109.081, 80.005 j/k mol and Ea = 23.936, 23.744, 15.464 Kj/mol) support the conclusion that the DMBAR molecules are adsorbed by entropy-driven endothermic process. Among different conventional kinetic methods such as pseudo-first order, pseudo-second and intraparticle diffusion-order kinetic models, the adsorption process follows a second-order equation while the intraparticle diffusion is one of the rate-limiting factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baughman R.H., Zakhidov A.A., Heer de W.A.: Carbon nanotubes-the route toward applications. Science 297, 787 (2002)

    Article  Google Scholar 

  2. Coleman J.N., Khan U., Gunko Y.K.: Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689 (2006)

    Article  Google Scholar 

  3. Xie, X.; Gao, L.; Sun, J.; Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 308, 54 (2007)

    Google Scholar 

  4. Bukallah, S.B.; Rauf, M.A.; Alali, S.S.: Removal of methylene blue from aqueous solution by adsorption on sand. Dyes Pigments 74, 85 (2007)

    Google Scholar 

  5. Namasivayam, C.; Radhika, R.; Suba, S.: Uptake of dyes by a promising locally available agricultural solid waste: coir pith. Waste Manag. 21, 381 (2001)

    Google Scholar 

  6. Isa, M.H.; Lang, L.S.; Asaari, F.A.H.; Aziz, H.A.; Ramli, N.A.; Dhas, J.P.A.: Low cost removal of disperse dyes from aqueous solution using palm ash. Dyes Pigments 74, 446 (2007)

    Google Scholar 

  7. Lata H., Garg V.K., Gupta R.K.: Adsorptive removal of basic dye by chemically activated Parthenium biomass: equilibrium and kinetic modeling. Desalination 219, 250 (2008)

    Article  Google Scholar 

  8. Chen, J.Y.; Chen, W.; Zhu, D.Q.: Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry. Environ. Sci. Technol. 42, 7225 (2008)

    Google Scholar 

  9. Yang, S.; Li, J.; Shao, D.; Hu, J.; Wang, X.: Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater 166, 109 (2009)

    Google Scholar 

  10. Chen, W.; Duan, L.; Zhu, D.: Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 41, 8295 (2007)

    Google Scholar 

  11. Yang, K.; Zhu, L.; Xing, B.X.: Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol. 40, 1855 (2006)

    Google Scholar 

  12. Hu, J.; Chen, C.; Zhu, X.; Wang, X.: Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162, 1542 (2009)

    Google Scholar 

  13. Yang K., Xing B.S.: Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut. 145, 529 (2007)

    Article  Google Scholar 

  14. Ghaedi, M.; Hassanzadeh, A.; Nasiri Kokhdan, S.: Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of alizarin red S and morin. J. Chem. Eng. Data. 56, 2511 (2011)

    Google Scholar 

  15. Sheng, G.; Li, J.; Shao, D.; Hu, J.; Chen, C.; Chen, Y.; Wang, X.: Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J. Hazard. Mater. 178, 333 (2010)

    Google Scholar 

  16. Sheng, G.D.; Shao, D.D.; Ren, X.M.; Wang, X.Q.; Li, J.X.; Chen, Y.X.; Wang, X.K.: Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 178, 505 (2010)

  17. Ghaedi, M.; Shokrollahi, A.; Hossainian, H.; Nasiri Kokhdan, S.: Comparison of activated carbon and multiwalled carbon nanotube for efficient removal of eriochrome cyanine R: kinetic, isotherm and thermodynamic study of removal process. Chem. Eng. Data. 56, 3227 (2011)

    Google Scholar 

  18. Pan, B.; Xing, B.S.; Liu, W.X.; Tao, S.; Lin, X.M.; Zhang, Y.X.; Yuan, H.S.; Dai, H.C.; Zhang, X.M.; Xiao, Y.: Two-compartment sorption of phenanthrene on eight soils with various organic carbon contents. J. Environ. Sci. Health Part B41, 1333 (2006)

  19. Yang, S.B.; Hu, J.; Chen, C.L.; Shao, D.D.; Wang, X.K.: Mutual effect of Pb(II) and humic acid adsorption onto multiwalled carbon nanotubes/poly(acrylamide) composites from aqueous solution. Environ. Sci. Technol. 45, 3621 (2011)

    Google Scholar 

  20. Shen, X.-E.; Shan, X.-Q.; Dong, D.-M.; Hua, X.-Y.; Owens, G.: Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes. J. Colloid Interface Sci. 330, 1 (2009)

    Google Scholar 

  21. Huang, T.S.; Tzeng, Y.; Liu, Y.K.; Chen, Y.C.; Walker, K.C.; Guntupalli, R.: Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diamond Relat. Mater. 13, 1098 (2004)

    Google Scholar 

  22. Purkait, M.K.; Gusain, D.S.; DasGupta, S.; De, S.: Adsorption behavior of chrysoidine dye on activated charcoal and its regeneration characteristics using different surfactants. Sep. Sci. Technol. 39, 2419 (2004)

    Google Scholar 

  23. Sheng, G.; Wang, S.; Hu, J.; Lu, Y.; Li, J.; Dong, Y.; Wang, X.: Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids Surf. A 339,159 (2009)

    Google Scholar 

  24. Peng, X.; Li, Y.; Luan, Z.; Di, Z.; Wang, H.; Tian, B.; Jia, Z.: Adsorption of 1,2- dichlorobenzene fromwater to carbon nanotubes. Chem. Phys. Lett. 376, 154 (2003)

    Google Scholar 

  25. Chen, G.-C.; Shan, X.-Q.; Zhou, Y.-Q.; Shen, X.-E.; Huang, H.-L.; Khan, S.U.: Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. J. Hazard Mater. 169, 912 (2009)

    Google Scholar 

  26. Tütem, E.; Apak, R.; Ünal, C.F.: Adsorptive removal of chlorophenols from water by bituminous shale. Water Res. 32, 2315 (1998)

    Google Scholar 

  27. Lu, C.; Chung, Y.-L.; Chang, K.-F.: Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. J. Hazard Mater. B138,304 (2006)

  28. Kannan, K.; Sundaram, M.M.: Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigments 51, 25 (2001)

    Google Scholar 

  29. Hosseini, S.J.; Nasiri Kokhdan, S.; Ghaedi, A.M.; Moosavian, S.S.: Comparison of multiwalled carbon nanotubes and activated carbon for efficient removal of methyl orange: kinetic and thermodynamic investigation. Fresen. Environ. Bull. 20, 219 (2011)

    Google Scholar 

  30. Chiou, M.S.; Chuang, G.S.: Competitive adsorption of dyemetanil yellowand RB15 in acidic solutions on chemically cross-linked chitosan beads. Chemospher 62, 731 (2006)

    Google Scholar 

  31. Ruthven, D.M.; Loughlin, K.F.: The effect of crystallite shape and size distribution on diffusion measurements in molecular sieves. Chem. Eng. Sci. 26, 577 (1971)

    Google Scholar 

  32. Haydar, S.; Ferro-Garcia, M.A.; Rivera-Utrilla, J.; Joly, J.P.: Adsorption of p-nitrophenol on an activated carbon with different oxidations. Carbon 41, 387 (2003)

    Google Scholar 

  33. Arivoli, S.: Adsorption of malachite green onto carbon prepared from borassus bark. Arab. J. Sci. Eng. 34, 31 (2009)

    Google Scholar 

  34. Li, Y.H.; Xu, C.; Wei, B.; Zhang, X.; Zheng, M.; Wu, D.; Ajayan, P.M.: Self organized ribbons of aligned carbon nanotubes. Chem. Mater. 14, 483 (2002)

    Google Scholar 

  35. Nandi B.K., Goswami A., Purkait M.K.: Adsorption characteristics of brilliant green dye on kaolin. J. Hazard Mater. 161, 387 (2009)

    Article  Google Scholar 

  36. Guibal, E.; McCarrick, P.; Tobin, J.M.: Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Sep. Sci. Technol. 38, 3049 (2003)

    Google Scholar 

  37. Kannan, N.; sundaram, M.M.: Adsorption of Congo red on various activated carbons. Water Air Soil Pollut. 138, 289 (2002)

    Google Scholar 

  38. Ozcan, A.; Ozcan, A.S.: Adsorption of acid red 57 from aqueous solutions onto surfactant-modified sepiolite. J. Hazard Mater. 125, 252 (2005)

    Google Scholar 

  39. Amin, N.K.: Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J. Hazard Mater. 165, 52 (2009)

    Google Scholar 

  40. Franz, M.; Arafat, H.A.; Pinto, N.G.: Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38, 1807 (2000)

    Google Scholar 

  41. Zhu, D.; Pignatello, J.J.: Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci. Technol. 39, 2033 (2005)

    Google Scholar 

  42. Li, Y.H.; Di, Z.C.; Ding, J.; Wu, D.H.; Luan, Z.K.; Zhu, Y.Q.: Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 39, 605 (2005)

    Google Scholar 

  43. Zhang, J.; Zou, H.L.; Qing, Q.; Yang, Y.L.; Li, Q.W.; Liu, Z.F.; Guo, X.Y.; Du, Z.L.: Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B107, 3712 (2003)

  44. Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L.: Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. J. Hazard Mater. 148, 229 (2007)

    Google Scholar 

  45. Arami, M.; Limaee, N.Y.; Mahmoodi, N.M.; Tabrizi, N.S.: Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution soy meal hull. J. Hazard Mater. B135, 171 (2006)

  46. Aziz, A.; Ouali, M.S.; Elandaloussi, E.H.; De Menorval, L.C.; Lindheimer, M.: Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions. J. Hazard Mater. 163, 441 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghaedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaedi, M., Ghobadzadeh, P., Nasiri Kokhdan, S. et al. Oxidized Multiwalled Carbon Nanotubes as Adsorbents for Kinetic and Equilibrium Study of Removal of 5-(4-Dimethyl Amino Benzylidene)Rhodanine. Arab J Sci Eng 38, 1691–1699 (2013). https://doi.org/10.1007/s13369-012-0419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0419-7

Keywords

Navigation