Skip to main content
Log in

Suturing property of tough double network hydrogels for bio-repair materials

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Cartilage and meniscal lesions have limited potential for spontaneous repair. Consequently, much effort has been made to develop methods for repairing such lesions. Double-network (DN) gels are new candidate-materials for repairing such lesions. They exhibit exceptional mechanical strength and toughness in spite of their high water content. In this study, we prepared highly tough DN hydrogels and investigated the mechanical properties related to clinical implant use. The mechanical properties such as Young’s modulus and suture tear-out strength were measured for the artificial replacement. The results suggest that the suture property of DN hydrogels can be adjusted by controlling the crosslinking density and monomer concentration. Finite element method was also applied to these DN hydrogels in order to check whether the fracture strength of the material is enough to meet a medical purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, M.P., A.U. Daniels, S. Ronken, H.A. Garcia, N.F. Friederich, T. Kurokawa, J.P. Gong, and D. Wirz, 2011, Acrylamide polymer double-network hydrogels: candidate cartilage repair materials with cartilage-like dynamic stiffness and attractive surgery-related attachment mechanics, Cartilage 2, 374–383.

    Article  Google Scholar 

  • Chen, G. and A.S. Hoffman, 1995, Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH, Nature 373, 49–52.

    Article  Google Scholar 

  • Chen, Q. and R.H. Colby, 2014, Linear viscoelasticity of sulfonated styrene oligomers near the sol-gel transition, Korea-Aust. Rheol. J. 26, 257–261.

    Article  Google Scholar 

  • Diehl, T., 2008, On using a penalty-based cohesive-zone finite element approach, part I: elastic solution benchmarks, Int. J. Adhes. Adhes. 28, 237–255.

    Article  Google Scholar 

  • Drury, J.L. and D.J. Mooney, 2003, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials 24, 4337–4351.

    Article  Google Scholar 

  • Garcia, H.A., A.U. Daniels, and D. Wirz, 2008, Dual-mode dynamic functional stiffness of articular cartilage, Eur. Cells Mater. 16, 7.

    Google Scholar 

  • Gong, J.P., 2010, Why are double network hydrogels so tough?, Soft Matter 6, 2583–2590.

    Article  Google Scholar 

  • Gong, J.P., T. Kurokawa, T. Narita, G. Kagata, Y. Osada, G. Nishimura, and M. Kinjo, 2001, Synthesis of hydrogels with extremely low surface friction, J. Am. Chem. Soc. 123, 5582–5583.

    Article  Google Scholar 

  • Gong, J.P., Y. Katsuyama, T. Kurokawa, and Y. Osada, 2003, Double-network hydrogels with extremely high mechanical strength, Adv. Mater. 15, 1155–1158.

    Article  Google Scholar 

  • Farhadi, J., I. Fulco, S. Miot, D. Wirz, M. Haug, and S. C. Dickinson, 2006, Precultivation of engineered human nasal cartilage enhances the mechanical properties relevant for use in facial reconstructive surgery, Ann. Surg. 244, 978–985.

    Article  Google Scholar 

  • Langer, R. and D.A. Tirrell, 2004, Designing materials for biology and medicine, Nature 428, 487–492.

    Article  Google Scholar 

  • Na, Y.H., 2013, Double network hydrogels with extremely high toughness and their applications, Korea-Aust. Rheol. J. 25, 185–196.

    Article  Google Scholar 

  • Na, Y.-H., T. Kurokawa, Y. Katsuyama, H. Tsukeshiba, J.P. Gong, Y. Osada, S. Okabe, T. Karino, and M. Shibayama, 2004, Structural characteristics of double network gels with extremely high mechanical strength, Macromolecules 37, 5370–5374.

    Article  Google Scholar 

  • Na, Y.-H., Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J.P. Gong, and Y. Osada, 2006, Necking phenomenon of double-network gels, Macromolecules 39, 4641–4645.

    Article  Google Scholar 

  • Nair, A.U., L. Hubert, and A.M. Bestelmeyer, 2009, Characterization of damage in hyperelastic materials using standard test methods and abaqus, 2009 SIMULIA Customer Conference, 1–15.

    Google Scholar 

  • Osada, Y., H. Okuzaki, and H. Hori, 1992, A polymer gel with electrically driven motility, Nature 355, 242–244.

    Article  Google Scholar 

  • Tanaka, Y., I. Nishio, S.T. Sun, and S. Ueno-Nishio, 1982, Collapse of gels in an electric-field, Science 218, 467–469.

    Article  Google Scholar 

  • Tsukeshiba, H., M. Huang, Y.-H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H. Furukawa, Y. Osada, and J.P. Gong, 2005, Effect of polymer entanglement on the toughening of double network hydrogels, J. Phys. Chem. B 109, 16304–16309.

    Article  Google Scholar 

  • Wirz, D., K. Kohelr, B. Keller, D. Gopfert, D. Hudetz, and A.U. Daniels, 2008, Dynamic stiffness of articular cartilage by single impact microindentation (SIMI), J. Biomech. 41, S172.

    Article  Google Scholar 

  • Yoshida, R., T. Takahashi, T. Yamaguchi, and H. Ichijo, 1997, Self-oscillating gels, Adv. Mater. 9, 175–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngbae Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, Y.H., Oh, H.Y., Ahn, Y.J. et al. Suturing property of tough double network hydrogels for bio-repair materials. Korea-Aust. Rheol. J. 27, 25–31 (2015). https://doi.org/10.1007/s13367-015-0004-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-015-0004-1

Keywords

Navigation