Skip to main content
Log in

Computational analysis of hydrodynamics of shear-thinning viscoelastic fluids in a square lid-driven cavity flow

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Computational results for steady laminar flow of three different shear thinning fluids lid-driven square cavity are presented. The viscoelastic nature of the fluids is represented by linear and exponential Phan-Thien Tanner (PTT) and Giesekus constitutive models. Computations are based on finite volume technique incorporating non-uniform collocated grids. The stress terms in the constitutive equations are approximated by higher-order and bounded scheme of Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA). Effects of the elasticity, inertia as well as constitutive model parameters on the stress and velocity fields, size and intensity of the primary and secondary vortexes are investigated and discussed in detail. Moreover highly accurate benchmark numerical solutions are provided for each considered constitutive model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboubacar, M., H. Matallah, H.R. Tamaddon-Jahromi, and M.F. Webster, 2002, Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method, J. Non-Newtonian Fluid Mech. 104, 125–164.

    Article  CAS  Google Scholar 

  • Aboubacar, M., H. Matallah, and M.F. Webster, 2012, Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: planar contraction flow, J. Non-Newtonian Fluid Mech. 103, 65–103.

    Article  Google Scholar 

  • Alves, M.A., P.J. Oliveira, and F.T. Pinho, 2003, A convergent and universally bounded interpolation scheme for the treatment of advection, Int. J. Numer. Meth. Fluids 4, 47–75.

    Article  Google Scholar 

  • Alves, M.A., P.J. Oliveira, and F.T. Pinho, 2003, Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions, J. Non-Newtonian Fluid Mech. 110, 45–75.

    Article  CAS  Google Scholar 

  • Alves, M.A., F.T. Pinho, and P.J. Oliveira, 2001, Study of steady pipe and channel flows of a single-mode Phan-Thien-Tanner fluid, J. Non-Newtonian Fluid Mech. 101, 55–76.

    Article  CAS  Google Scholar 

  • Baig, C., B. Jiang, B.J. Edwards, D.J. Keffer and H.D. Cochran, 2006, A comparison of simple rheological models and simulation data of n-hexadecane under shear and elongational flows, J. Rheol. 50, 625–640.

    Article  CAS  Google Scholar 

  • Bird R.B., C.F. Curtiss, R.C. Armstrong and O. Hassager, 1987, Dynamic of Polymeric Liquids, vol. 2, Wiley New York.

  • Bogaerds, A.C.B., A.M. Grillet, G.W.M. Peters, and F.P.T. Baaijens, 2002, Stability analysis of polymer shear flows using extended Pom-Pom constitutive equations, J. Non-Newtonian Fluid Mech. 108, 187–208.

    Article  CAS  Google Scholar 

  • Byars, J.A., R.J. Binnington, and D.V. Boger, 1997, Entry flow and constitutive modeling of fluid S1, J. Non-Newtonian Fluid Mech. 72, 219–235.

    Article  CAS  Google Scholar 

  • Cruz, D.O.A., F.T. Pinho, and P.J. Oliveira, 2005, Analytical solution for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution, J. Non-Newtonian Fluid Mech. 132, 28–35.

    Article  CAS  Google Scholar 

  • Fietier, N., and M.O. Deville, 2003, Linear stability analysis of time-dependent algorithms with spectral element methods for the simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech. 115, 157–190.

    Article  CAS  Google Scholar 

  • Giesekus, H., 1982, A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration dependent molecular mobility, Rheol. Acta 21, 366–375.

    Article  CAS  Google Scholar 

  • Grillet, A.M., A.C.B. Bogaerds, G.W.M. Peters, and F.P.T. Baaijens, 2002, Stability analysis of constitutive equations for polymer melts in viscometric flows, J. Non-Newtonian Fluid Mech. 103, 221–250.

    Article  CAS  Google Scholar 

  • Hayase, T., J.A.C. Humphrey, and R. Greif, 1992, A consistently formulated quick scheme for fast and stable convergence using finite-volume iterative calculation procedures, J. Comp. Phys. 98, 108–118.

    Article  Google Scholar 

  • Khan, S.A., and R.G. Larson, 1987, Comparison of Simple Constitutive Equations for Polymer Melts in Shear and Biaxial and Uniaxial Extensions, J. Rheol. 31, 207–234.

    Article  CAS  Google Scholar 

  • Khosla, P.K., and S.G. Rubin, 1974, A diagonally dominant second order accurate implicit scheme, Comput. Fluids 2, 207–209.

    Article  Google Scholar 

  • Larson, R.G., 1987, A critical comparison of constitutive equations for polymer melts, J. Non-Newtonian Fluid Mech. 23, 249–269.

    Article  CAS  Google Scholar 

  • Lee, J., S. Yoon, Y. Kwon, and S. Kim, 2004, Practical comparison of diffential viscoelastic constitutive equations in finite element analysis of planar 4:1 contraction flow, Rheol. Acta 44, 188–197.

    Article  CAS  Google Scholar 

  • Loh, K.W.L., A.A.O. Tay, and S.H. Teoh, 1996, Effect of constitutive models on the numerical simulation of viscoelastic flow at an entry region, Polymer Engineering and Science 36, 1990–2000.

    Article  CAS  Google Scholar 

  • Maia, J.M., 1999, Theoretical modeling of fluid S1: a comparative study of constitutive models in sample and complex flows, J. Non-Newtonian Fluid Mech. 85, 107–125.

    Article  CAS  Google Scholar 

  • Patankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.

    Google Scholar 

  • Patankar, S.V., and D.B. Spalding, 1972, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15, 1787–1806.

    Article  Google Scholar 

  • Peters, G.W.M, J.F.M Schoonen, F.P.T. Baaijens, and H.E.H. Meijer, 1999, On the performance of enhanced constitutive models for polymer melts in a cross-slot flow, J. Non-Newtonian Fluid Mech. 82, 387–427.

    Article  CAS  Google Scholar 

  • Phan-Thien, N., 1978, A nonlinear network viscoelastic model, J. Rheol. 22, 259–283.

    Article  CAS  Google Scholar 

  • Phan-Thien, N., and R.I. Tanner, 1977, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech. 2, 353–365.

    Article  Google Scholar 

  • Ravanchi, M.T., M. Mirzazadeh, and F. Rashidi, 2007, Flow of Giesekus viscoelastic fluid in a concentric annulus with inner cylinder rotation, International Journal of Heat and Fluid Flow, 28, 838–845.

    Article  Google Scholar 

  • Roache, P.J., 1997, Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech., 29, 123–160.

    Article  Google Scholar 

  • Soulages, J., T. Schweizer, D.C. Venerus, M. Kröger, and H.C. Öttinger, 2008, Lubricated cross-slot flow of a low density polyethylene melt, J. Non-Newtonian Fluid Mech. 154, 52–64.

    Article  CAS  Google Scholar 

  • Versteeg, H. K. and W. Malalasekera, 1995, An introduction to computational fluid dynamics: The finite volume method, Prentice Hall.

    Google Scholar 

  • Yapici, K., 2012, A comparison study on high-order bounded schemes: flow of PTT-linear fluid in a lid-driven square cavity, Korea-Australia Rheology Journal 24, 11–21.

    Article  Google Scholar 

  • Yapici, K., B. Karasozen and Y. Uludağ, 2009, Finite volume simulation of viscoelastic laminar flow in a lid driven cavity, J. Non-Newtonian Fluid Mech. 164, 51–65.

    Article  CAS  Google Scholar 

  • Zatloukal, M., 2003, Differential viscoelastic constitutive equations for polymer melts in steady shear and elongational flows, J. Non-Newtonian Fluid Mech. 113, 209–227.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerim Yapici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yapici, K., Uludag, Y. Computational analysis of hydrodynamics of shear-thinning viscoelastic fluids in a square lid-driven cavity flow. Korea-Aust. Rheol. J. 25, 243–260 (2013). https://doi.org/10.1007/s13367-013-0025-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-013-0025-6

Keywords

Navigation