Skip to main content

Advertisement

Log in

HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal L, Louboutin JP, Marusich E, Reyes BA, Van Bockstaele EJ, Strayer DS (2010) Dopaminergic neurotoxicity of HIV-1 gp120: reactive oxygen species as signaling intermediates. Brain Res 1306:116–130

    Article  CAS  PubMed  Google Scholar 

  • Atluri VS, Kanthikeel SP, Reddy PV, Yndart A, Nair MP (2013) Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND). PLoS One 8, e61399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t test and statistical inferences of gene changes. Bioinformatics 17:509–519

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Zhang X, Manda KR, Banks WA, Ercal N (2010) HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: potential role of the thiol antioxidant N-acetylcysteine amide. Free Radic Biol Med 48:1388–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero CA, Datta PK, Sen S, Deshmane S, Amini S, Khalili K et al (2013) HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One 8, e68376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134

    CAS  PubMed  Google Scholar 

  • Deshmane SL, Mukerjee R, Fan S, Del Valle L, Michiels C, Sweet T et al (2009) Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem 284:11364–11373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich MO, Liu ZW, Horvath TL (2013) Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou H, Ellison B, Bradley J, Kasiyanov A, Poluektova LY, Xiong H et al (2005) Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. J Neurosci 25:8375–8385

    Article  CAS  PubMed  Google Scholar 

  • Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247

    Article  CAS  PubMed  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Probes 11:O111 016717.

  • Hendrickson SL, Hutcheson HB, Ruiz-Pesini E, Poole JC, Lautenberger J, Sezgin E et al (2008) Mitochondrial DNA haplogroups influence AIDS progression. Aids 22:2429–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrickson SL, Kingsley LA, Ruiz-Pesini E, Poole JC, Jacobson LP, Palella FJ et al (2009) Mitochondrial DNA haplogroups influence lipoatrophy after highly active antiretroviral therapy. J Acquir Immune Defic Syndr 51:111–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrickson SL, Lautenberger JA, Chinn LW, Malasky M, Sezgin E, Kingsley LA et al (2010) Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression. PLoS One 5, e12862

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollenbaugh JA, Munger J, Kim B (2011) Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology 415:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana A, Pahan K (2004) Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci 24:9531–9540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas E (2006) BCL-xL regulates synaptic plasticity. Mol Interv 6:208–222

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    Article  CAS  PubMed  Google Scholar 

  • Kayala MA, Baldi P (2012) Cyber-T web server: differential analysis of high-throughput data. Nucleic Acids Res 40:W553–W559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer A, Green J, Pollard J, Jr., Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30(4):523–530

  • Liao W, Tan G, Zhu Z, Chen Q, Lou Z, Dong X et al (2012) Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes in Jurkat T-cells treated with HIV-1 Tat protein. J Proteome Res 11:5109–5123

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Matsuura SE, Barrientos A, Scott WA (2013) HIV-1 infection is blocked at an early stage in cells devoid of mitochondrial DNA. PLoS One 8, e78035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF et al (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277:29626–29633

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904

    Article  CAS  PubMed  Google Scholar 

  • Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S et al (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288

    Article  CAS  PubMed  Google Scholar 

  • Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D et al (2001) Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 24:411–416

    Article  CAS  PubMed  Google Scholar 

  • Moran LM, Booze RM, Webb KM, Mactutus CF (2013) Neurobehavioral alterations in HIV-1 transgenic rats: evidence for dopaminergic dysfunction. Exp Neurol 239:139–147

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Sacktor N (2006) Influence of highly active antiretroviral therapy on persistence of HIV in the central nervous system. Curr Opin Neurol 19:358–361

    Article  PubMed  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    Article  CAS  PubMed  Google Scholar 

  • Olivetta E, Mallozzi C, Ruggieri V, Pietraforte D, Federico M, Sanchez M (2009) HIV-1 Nef induces p47(phox) phosphorylation leading to a rapid superoxide anion release from the U937 human monoblastic cell line. J Cell Biochem 106:812–822

    Article  CAS  PubMed  Google Scholar 

  • Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J et al (2014) Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. Aids 28:297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Vigorito M, Liu X, Zhou D, Wu X, Chang SL (2010) The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol 218:94–101

    Article  CAS  PubMed  Google Scholar 

  • Pocernich CB, Sultana R, Mohmmad-Abdul H, Nath A, Butterfield DA (2005) HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations. Brain Res Brain Res Rev 50:14–26

    Article  CAS  PubMed  Google Scholar 

  • Rasheed S, Yan JS, Lau A, Chan AS (2008) HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS One 3, e3003

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N et al (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A 98:9271–9276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringrose JH, Jeeninga RE, Berkhout B, Speijer D (2008) Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1. J Virol 82:4320–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA et al (2011) High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 6, e21746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roscoe RF Jr, Mactutus CF, Booze RM (2014) HIV-1 transgenic female rat: synaptodendritic alterations of medium spiny neurons in the nucleus accumbens. J Neuroimmune Pharmacol 9:642–653

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Saha RN, Pahan K (2003) Tumor necrosis factor-alpha at the crossroads of neuronal life and death during HIV-associated dementia. J Neurochem 86:1057–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmen S, Colmenares M, Peterson DL, Reyes E, Rosales JD, Berrueta L (2010) HIV-1 Nef associates with p22-phox, a component of the NADPH oxidase protein complex. Cell Immunol 263:166–171

    Article  CAS  PubMed  Google Scholar 

  • Scopes RK (1974) Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59:277–282

    Article  CAS  PubMed  Google Scholar 

  • Seong IS, Ivanova E, Lee J, Choo YS, Fossale E, Anderson M et al (2005) HD CAG repeats implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 14:2871–2880

    Article  CAS  PubMed  Google Scholar 

  • Songok EM, Luo M, Liang B, McLaren P, Kaefer N, Apidi W et al (2012) Microarray analysis of HIV resistant female sex workers reveal a gene expression signature pattern reminiscent of a lowered immune activation state. PLoS One 7, e30048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stauch KL, Purnell PR, Fox HS (2014a) Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res 13:2620–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stauch KL, Purnell PR, Fox HS (2014b) Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Albany NY) 6:320–334

    Article  CAS  Google Scholar 

  • Stauch KL, Purnell PR, Villeneuve LM, Fox HS (2015) Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism. Proteomics 15:1574–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R et al (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiede LM, Cook EA, Morsey B, Fox HS (2011) Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell Death Dis 2, e246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigorito M, Connaghan KP, Chang SL (2015) The HIV-1 transgenic rat model of neuroHIV. Brain Behav Immun

  • Vilhardt F, Plastre O, Sawada M, Suzuki K, Wiznerowicz M, Kiyokawa E et al (2002) The HIV-1 Nef protein and phagocyte NADPH oxidase activation. J Biol Chem 277:42136–42143

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve L, Tiede LM, Morsey B, Fox HS (2013) Quantitative proteomics reveals oxygen-dependent changes in neuronal mitochondria affecting function and sensitivity to rotenone. J Proteome Res 12:4599–4606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villeneuve LM, Stauch KL, Fox HS (2014a) Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands. J Proteomics

  • Villeneuve LM, Purnell PR, Boska MD, Fox HS (2014b) Early expression of Parkinson’s disease-related mitochondrial abnormalities in PINK1 knockout rats. Mol Neurobiol

  • Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678

    Article  CAS  PubMed  Google Scholar 

  • Wu RF, Ma Z, Myers DP, Terada LS (2007) HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. J Biol Chem 282:37412–37419

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, McCabe L, Skifter D, Monaghan DT, Gendelman HE (2003a) Activation of NR1a/NR2B receptors by monocyte-derived macrophage secretory products: implications for human immunodeficiency virus type one-associated dementia. Neurosci Lett 341:246–250

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Boyle J, Winkelbauer M, Gorantla S, Zheng J, Ghorpade A et al (2003b) Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia. J Neurosci Res 71:600–607

    Article  CAS  PubMed  Google Scholar 

  • Yao CK, Lin YQ, Ly CV, Ohyama T, Haueter CM, Moiseenkova-Bell VY et al (2009) A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138:947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305–313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Proteomics Core Facility members at the University of Nebraska Medical Center, under the direction of Dr. Pawel Ciborowski, for all their support and aid in the proteomics experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Fox.

Ethics declarations

Conflict of interest

Lance M. Villeneuve, Phillip R. Purnell, Kelly L. Stauch, Shannon E. Callen, Shilpa J. Buch, and Howard S. Fox report no conflict of interest.

Funding sources

This work was funded by the National Institute of Health (NIH) grants P30MH062261, R01DA027729, R01DA033150, R01DA36157, and R01MH73490.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1: Table S1

List of select proteins with significantly altered expression profiles in the HIV-1 Tg rat brain synaptic mitochondria. Proteomic data was analyzed through CyberT (http://cybert.ics.uci.edu/). A Bayesian analysis of the data was performed using a Bayesian coefficient of 12. Multiple testing corrections were applied. For significance, p < 0.05 and cumulative posterior probability of differential expression (Cum PPDE) > 0.95. (XLS 126 kb)

Supplementary file 2: Fig. S1

Histograms demonstrating sample reproducibility. Area under curve data obtained from mass spectrometry was used to generate histograms comparing samples against one another within each experimental group. Pearson’s r coefficient was generated for each comparison. (TIFF 16456 kb)

Supplementary file 3: Fig. S2

Gene Ontology (GO) biological process analysis. Data from the mass spectrometry analysis were uploaded into the Panther classification system (http://www.pantherdb.org/) to determine which biological processes were most represented in our samples. (TIFF 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villeneuve, L.M., Purnell, P.R., Stauch, K.L. et al. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. J. Neurovirol. 22, 564–574 (2016). https://doi.org/10.1007/s13365-016-0424-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-016-0424-9

Keywords

Navigation