Skip to main content
Log in

Checkpoints in productive and latent infections with herpes simplex virus 1: conceptualization of the issues

  • Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The fundamental question posed here is why in dorsal root ganglia herpes simplex viruses (HSV) can establish a silent infection in which only latency associate transcripts (LAT) and miRNAs are expressed and the neuronal cell survives whereas in non-neuronal cells HSV replicates and destroys the infected cells. Current evidence indicates that in productive infection there are two checkpoints. The first is at activation of α genes and requires a viral protein (VP16) that recruits HCF-1, Oct1, LSD1, and the CLOCK histone acetyl transferase to demethylate histones and initiate transcription. The second checkpoint involves activation of β and γ genes. An α protein, ICP0, activates transcription by displacing HDAC1 or 2 from the HDAC/CoREST/LSD1/REST repressor complex at its DNA binding sites. Current data suggest that in dorsal root ganglia VP16 and HCF-1 are not translocated to neuronal nucleus and that the HDAC/CoREST/LSD1/REST complex is not suppressed—a first step in silencing of the viral genome and establishment of heterochromatin. The viral genome remains in a state of equilibrium with respect to viral gene expression. The function of both LAT and the micro RNAs is to silence low level expression of viral genes that could reactivate the latent genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506

    Article  PubMed  CAS  Google Scholar 

  • Boissiere S, Hughes T, O’Hare P (1999) HCF-dependent nuclear import of VP16. EMBO J 18:480–489

    Article  PubMed  Google Scholar 

  • Boutell C, Sadis S, Everett RD (2002) Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76:841–850

    Article  PubMed  CAS  Google Scholar 

  • Chee AV, Lopez P, Pandolf PP, Roizman B (2003) Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol 77:7101–7105

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Lee L, Garber D, Shaffer P, Knipe D, Coen D (2002) Neither LAT nor open reading frame P mutations increase expression of spliced or intron-containing ICP0 transcripts in mouse ganglia latently infected with herpes simplex virus. J Virol 76:4764–4772

    Article  PubMed  CAS  Google Scholar 

  • Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ, Coen DM (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499–5508

    Article  PubMed  CAS  Google Scholar 

  • Du T, Zhou G, Khan S, Gu H, Roizman B (2010) Disruption of HDAC/CoREST/REST repressor by dnREST reduces genome silencing and increases virulence of herpes simplex virus. Proc Natl Acad Sci USA 2010(107):15904–15909

    Article  Google Scholar 

  • Gopalakrishnan V (2009) REST and the RESTless: in stem cells and beyond. Futur Neurol 4:317–329

    Article  CAS  Google Scholar 

  • Gu H, Roizman B (2003) The degradation of PML and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5a. Proc Natl Acad Sci USA 100:8963–8968

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Roizman B (2007) Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST/REST complex. Proc Natl Acad Sci USA 104:17134–17139

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Roizman B (2009) The two functions of HSV-1 ICP0, inhibition of silencing by the CoREST/REST/HDAC complex and degradation of PML, are executed in tandem. J Virol 83:181–187

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Liang Y, Mandel G, Roizman B (2005) Components of the REST/CoREST/histone deacetylase repressor are disrupted, modified and translocated in HSV-1-infected cells. Proc Natl Acad Sci USA 102:7571–7576

    Article  PubMed  CAS  Google Scholar 

  • Hagglund R, Van Sant C, Lopez P, Roizman B (2002) Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes. Proc Natl Acad Sci USA 99:631–666

    Article  PubMed  CAS  Google Scholar 

  • Javier RT, Stevens JG, Dessette VB, Wagner EK (1988) A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166:254–257

    Article  PubMed  CAS  Google Scholar 

  • Kalamvoki M, Roizman B (2010) The circadian CLOCK histone acetyl transferase localizes at ND10 nuclear bodies and enables herpes simplex virus genes expression. Proc Natl Acad Sci USA 107:17721–17726

    Article  PubMed  CAS  Google Scholar 

  • Kalamvoki M, Roizman B (2011) The histone acetyl transferase CLOCK is an essential component of the herpes simplex virus 1 transcriptome that includes TFIID, ICP4, ICP27 and ICP22. J Virol 85:9472–9477

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Tanaka M, Yokoymama A, Matsuda G, Kato K, Kagawa H, Hirai K, Roizman B (2001) Herpes simplex virus 1 alpha regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1. Proc Natl Acad Sci USA 98:1877–1882

    Article  PubMed  CAS  Google Scholar 

  • Knipe DM, Cliffe AR (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221

    Article  PubMed  CAS  Google Scholar 

  • Kristie TM, Vogel JL, Sears AE (1999) Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. Proc Natl Acad Sci USA 96:1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Kutluay SB, Triezenberg SJ (2009) Regulation of histone deposition on the herpes simplex virus type 1 genome during lytic infection. J Virol 83:5835–5845

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski DL, Thompson HW, Bloom DC (2009) The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. J Virol 83:8173–8181

    Article  PubMed  CAS  Google Scholar 

  • Lacasse JJ, Schang LM (2010) During lytic infections, herpes simplex virus type 1 is in complexes with properties of unstable nucleosomes. J Virol 84:1920–1933

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437:432–435

    PubMed  CAS  Google Scholar 

  • Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM (2009) Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 15:1312–1317

    Article  PubMed  CAS  Google Scholar 

  • Maillet S, Naas T, Crepin S, Roque-Afonso AM, Lafay F, Efstathiou S, Labetoulle M (2006) Herpes simplex virus type 1 latently infected neurons differentially express latency-associated and ICP0 transcripts. J Virol 80:9310–9321

    Article  PubMed  CAS  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Muller J, Schneider R, Peters AHFM, Gunther T, Buettner S, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    PubMed  CAS  Google Scholar 

  • Neumann DM, Bhattacharjee PS, Giordani NV, Bloom DC, Hill JM (2007) In vivo changes in the patterns of chromatin structure associated with the latent herpes simplex virus type 1 genome in mouse trigeminal ganglia can be detected at early times after butyrate treatment. J Virol 81:13248–13253

    Article  PubMed  CAS  Google Scholar 

  • Roizman B (2011) The checkpoints of viral gene expression in productive and latent infection: the role of the HDAC/CoREST/LSD1/REST repressor complex. J Virol 85:7474–7482

    Article  PubMed  CAS  Google Scholar 

  • Roizman B, Sears AE (1987) An inquiry into the mechanism of herpes simplex virus latency. Annu Rev Microbiol 41:543–571

    Article  PubMed  CAS  Google Scholar 

  • Roizman B, Knipe DM, Whitley RJ et al (2007) Herpes simplex viruses. In: Knipe DM (ed) Fields virology, 5th edn. Lippincott Williams & Wilkins, New York, pp 2501–2601

    Google Scholar 

  • Shi YJ, Matson C, Iwase S, Baba T, Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19:857–864

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Bertke AS, Patel A, Wang K, Cohen JI, Krause PR (2008) An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci USA 105:10931–10936

    Article  PubMed  CAS  Google Scholar 

  • Tapia-Ramírez J, Eggen BJ, Peral-Rubio MJ, Toledo-Aral JJ, Mandel G (1997) A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc Natl Acad Sci USA 94:1177–1182

    Article  PubMed  Google Scholar 

  • Thompson RL, Preston CM, Sawtell NM (2009) De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathog 5:e1000352

    Article  PubMed  Google Scholar 

  • Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783

    PubMed  CAS  Google Scholar 

  • Umbach JL, Nagel M, Cohrs R, Gilden D, Cullen BR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83:10677–10683

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Pesnicka L, Guancial E, Krause P, Straus S (2001) The 2.2-kilobase latency-associated transcript of herpes simplex virus type 2 does not modulate viral replication, reactivation, or establishment of latency in transgenic mice. J Virol 75:8166–8172

    Article  PubMed  CAS  Google Scholar 

  • Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM (2005) Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci USA 102:16055–16059

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Su Y, Block T, Taylor J (1996) Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. J Virol 70:5962–5967

    PubMed  CAS  Google Scholar 

  • Yang M, Gocke C, Luo X, Borek D, Tomchick D, Machius M, Otwinowski Z, Yu H (2006) Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell 23:377–387

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Du T, Roizman B (2010) The CoREST/REST repressor is both necessary and inimical for expression of herpes simplex virus gene expression. MBio 2:e00313-10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were aided by a grant from the National Cancer Institute grant R37 CA78766.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Roizman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roizman, B., Zhou, G. & Du, T. Checkpoints in productive and latent infections with herpes simplex virus 1: conceptualization of the issues. J. Neurovirol. 17, 512–517 (2011). https://doi.org/10.1007/s13365-011-0058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-011-0058-x

Keywords

Navigation