Skip to main content
Log in

The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants

  • Plant Genetics ∙ Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The Osmyb4 rice gene, coding for a transcription factor, proved to be efficient against different abiotic stresses as a trans(cis)gene in several plant species, although the effectiveness was dependent on the host genomic background. Eight barley transgenic lines carrying the rice Osmyb4 gene under the control of the Arabidopsis cold inducible promoter cor15a were produced to test the efficiency of this gene in barley. After a preliminary test, the best performing lines were subjected to freezing at −11°C and −12°C. Frost tolerance was assessed measured the Fv/Fm parameter widely used to indicate the maximum quantum yield of photosystem II photochemistry in the dark adapted state. Three transgenic lines showed significantly increased tolerance. These selected lines were further studied under a complex stress applying cold and hypoxia at germinating stage. In these conditions the three selected transgenic lines outperformed the wild type barley in terms of germination vigour. The transgenic plants also showed a significant modification of their metabolism under cold/hypoxia conditions as demonstrated through the assessment of the activity of key enzymes involved in anoxic stress response. None of the transgenic lines showed dwarfism, just a slight retarded growth. These results provide evidence that the cold dependent expression of Osmyb4 can efficiently improved frost tolerance and germination vigour at low temperature without deleterious effect on plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GP:

Golden Promise

RWC:

Relative water content

CSVT:

Complex stressing vigour test

AMY:

Alpha-amylase

ASAT:

Aspartate aminotransferase

LDH:

Lactate dehydrogenase

References

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Physiol 59:313–339

    Article  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5’-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  PubMed  CAS  Google Scholar 

  • Barla-Szabó G, Dolinka B (1988) Complex Stressing Vigour Test: a new method for wheat and maize seeds. Seed Sci Technol 16:63–73

    Google Scholar 

  • Bewley JD, Black M (1994) Seeds: Physiology of Development and Germination. 2nd ed. Springer, Berlin

  • Bradford K, Nonogaki H (2007) Seed Development, Dormancy and Germination. Annual Plant Reviews, Volume 27, Wiley, New York

  • Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem II of chloroplast. Biochimica et Biophysica Acta 376:116–125

    Article  PubMed  CAS  Google Scholar 

  • Cazzulo JJ, Juan SM, Segura EL (1977) Glutamate dehydrogenase and aspartate aminotransferase in Trypanosoma cruzi. Comp Biochem Physiol 56:301–303

    CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  PubMed  CAS  Google Scholar 

  • Crosatti C, Pagani D, Cattivelli L, Stanca AM, Rizza F (2008) Effect of growth stage and hardening conditions on the association between frost resistance and the expression of the cold-induced protein COR14B in barley. Environ Exp Bot 62:93–100

    Article  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • de Sousa CAF, Sodek L (2003) Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environ Exp Bot 50:1–8

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fincher GB, Stone BA (1993) Physiology and biochemistry of germination in barley. In: MacGregor AW, Bhatty RS (eds) Barley: chemistry and technology. American Association of Cereal Chemists, MN, pp 247–295

    Google Scholar 

  • Floris M, Mahgoub H, Lanet H, Robaglia C, Menand B (2009) Post-transcriptional regulation of gene expression in plants during abiotic stress. J Mol Sci 10:3168–3185

    Article  CAS  Google Scholar 

  • Galiba G, Vágújfalvi A, Li CX, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    Article  CAS  Google Scholar 

  • Geneve RL (2005) Vigour testing in flower seeds. In: McDonald MB, Kwong FY (eds) Flower seeds: biology and technology, CAB, Wallingford, UK, pp. 311–332

  • Good AG, Muench DG (1992) Purification and characterization of an aerobically induced alanine aminotransferase from barley roots. Plant Physiol 99:1520–1525

    Article  PubMed  CAS  Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI α-amylase gene promoter. The Plant Cell 7:1879–1891

    Article  PubMed  CAS  Google Scholar 

  • Hampton JG, TeKrony DM (1995) ISTA - Handbook of Vigour Test Methods, 3rd edn. International Seed Testing Association, Zurich, Switzerland

    Google Scholar 

  • Hanson AD, Jacobsen JV (1984) Control of lactate dehydrogenase, lactate glycolysis, and alpha-amylase by O2 deficit in barley aleurone layers. Plant Physiol 75:566–572

    Article  PubMed  CAS  Google Scholar 

  • Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennies ES (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis thaliana alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149:479–490

    PubMed  CAS  Google Scholar 

  • Hoffman NE, Bent AF, Hanson AD (1986) Induction of Lactate Dehydrogenase isozymes by oxigen deficit in barley root tissue. Plant Physiol 82:658–663

    Article  PubMed  CAS  Google Scholar 

  • Laura M, Consonni R, Locatelli F, Fumagalli E, Allavena A, Coraggio I, Mattana M (2010) Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing Osmyb4. Plant Physiol Biochem 48:764–771

    Article  PubMed  CAS  Google Scholar 

  • Loreti E, Vernieri P, Alpi A, Perata P (2002) Repression of α-amylase activity by anoxia in grains of barley is independent of ethanol toxicity or action of abscisic acid. Plant Biol 4:266–272

    Article  CAS  Google Scholar 

  • Mattana M, Biazzi E, Consonni R, Locatelli F, Vannini C, Provera S, Coraggio I (2005) Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiol Plantarum 125:212–223

    Article  CAS  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  • Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: When post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431

    Article  CAS  Google Scholar 

  • Mustroph A, Albrecht G (2003) Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia. Physiol Plantarum 117:508–520

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Park MR, Yun KY, Mohanty B, Herath V, Xu F, Wijaya E, Bajic VB, Yun SJ, De los Reyes BG (2010) Supra-optimal expression of the cold-regulated Osmyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effect on stress tolerance and panicle development. Plant Cell Environ 33:2209–2230

    Article  PubMed  CAS  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Perata P, Geshi N, Yamaguchy J, Akazawa T (1993) Effect of anoxia on the induction of alpha-amylase in cereal seeds. Planta 191:402–408

    Article  CAS  Google Scholar 

  • Rizza F, Pagani D, Stanca AM, Cattivelli L (2001) Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed 120:389–396

    Article  Google Scholar 

  • Saibo NJ, Lourenço T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York

    Google Scholar 

  • Sauvage FX, Romieu CG, Flanzy C, Robin JP (1991) Purification and characterization of an aerobically induced alanine aminotransferase from barley roots. Isolation and characterization of aspartate aminotransferase Am J Enol Vitic 42:209–218

    CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettel R (1997) Agrobacterium tumefaciens-mediated barley transformation. The Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Corragio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant J 37:115–127

    Article  CAS  Google Scholar 

  • Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Corragio I, Genga A (2006) The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol 69:26–42

    Article  CAS  Google Scholar 

  • Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, Bracale M (2007) Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci 173:231–239

    Article  CAS  Google Scholar 

  • Watson L, Henry RJ (2005) Microarray analysis of gene expression in germinating barley embryos (Hordeum vulgare L.). Funct Integr Genomics 5:155–162

    Article  PubMed  CAS  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill CA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotech J 8:749–771

    Article  CAS  Google Scholar 

  • Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

  • Zhou MQ, Shen C, Wu LH, Tang KY, Lin J (2010) CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Crit Rev Biotechnol 31:186–192

    Google Scholar 

Download references

Acknowledgements

We thank D. Pagani for her assistance, T. Berzy for his help in the CSVT experiments, A. Novák for her help in the statistical analysis and Dr. H.H. Stainbiss for fundamental suggestions on barley transformation protocol. This work was supported by the Hungarian Research Fund OTKA (Grant Nos. CNK 80781 and K75528) and by a CNR-MTA bilateral project (2007–2009) and by the National Development Agency grant TÁMOP-4.2.2/B-10/1-2010-0025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Vágújfalvi.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 940 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltész, A., Vágújfalvi, A., Rizza, F. et al. The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. J Appl Genetics 53, 133–143 (2012). https://doi.org/10.1007/s13353-011-0081-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-011-0081-x

Keywords

Navigation