Skip to main content
Log in

Progress in the study of the dynamics of extratropical atmospheric teleconnection patterns and their impacts on East Asian climate

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the extratropics of the Northern Hemisphere, there exist many kinds of atmospheric teleconnection patterns. According to their spatial structure, these teleconnection patterns are generally divided into two groups. One group comprises north-south dipole patterns, such as the North Atlantic Oscillation and the North Pacific Oscillation, which have two anomalous centers of opposite signs in the north-south direction. The other group includes the wave train-like patterns, which have several anomalous centers of opposite signs distributed mainly in the zonal direction, such as the Pacific/North American and Eurasian Patterns. These teleconnection patterns greatly impact weather and climate not only in the regions where the teleconnection patterns are active, but also in the regions thousands of kilometers away. Studying and understanding the formation mechanisms of these teleconnection patterns form the basis for the short-term climate prediction. This paper reviews advances in the study of the dynamics of these teleconnection patterns, with particular attention paid to the teleconnection patterns that significantly influence the weather and climate of East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., D. J. Vimont, P. Chang, et al., 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 2885–2901.

    Google Scholar 

  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic oscillation or North Atlantic oscillation? J. Climate, 14, 3495–3506.

    Google Scholar 

  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 1361–1381.

    Google Scholar 

  • Bader, J., and M. Latif, 2005: North Atlantic oscillation response to anomalous Indian Ocean SST in a coupled GCM. J. Climate, 18, 5382–5389.

    Google Scholar 

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.

    Google Scholar 

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126.

    Google Scholar 

  • Barriopedro, D., R. Garcia-Herrera, A. R. Lupo, et al., 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19, 1042–1063.

    Google Scholar 

  • Cash, B. A., and S. Lee, 2001: Observed nonmodal growth of the Pacific-North American teleconnec-tion pattern. J. Climate, 14, 1017–1028.

    Google Scholar 

  • Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic oscillation. Nature, 455, 523–527.

    Google Scholar 

  • Castanheira, J. M., and H. F. Graf, 2003: North Pacific-North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, ACL 11-1–ACL 11-10, doi:10.1029/2002JD002754.

    Google Scholar 

  • Chang, E. K. M., and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 2163–2183.

    Google Scholar 

  • —, S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183.

    Google Scholar 

  • Chen, L., B. Tan, N. G. Kvamstø, et al., 2014: Wintertime cyclone/anticyclone activity over China and its relation to upper tropospheric jets. Tellus A, in press.

    Google Scholar 

  • Chen, S. F., W. Chen, B. Yu, et al., 2013: Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation. Geophys. Res. Lett., 40, 6384–6389, doi:10.1002/2013GL058628.

    Google Scholar 

  • —, B. Yu, and W. Chen, 2014a: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973–989, doi: 10.1007/s00382-012-1654-z.

    Google Scholar 

  • Chen, S., B. Yu, and W. Chen, 2014b: An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Climate Dyn., doi: 10.1007/s00382-014-2152-2, in press.

    Google Scholar 

  • Chen, S. J., Y. H. Kuo, P. Z. Zhang, et al. 1991: Synoptic climatology of cyclogenesis over East Asia, 1958–1987. Mon. Wea. Rev., 119, 1407–1418.

    Google Scholar 

  • Chen, W., S. Yang, and R. H. Huang, 2005: Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res., 110, D14110, doi:10.1029/2004JD005669.

    Google Scholar 

  • —, and T. Li, 2007: Modulation of Northern Hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the Quasi-Biennial Oscillation. J. Geophys. Res., 112, D20120, doi:10.1029/2007JD008611.

    Google Scholar 

  • —, J. Feng, and R. G. Wu, 2013a: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622–635.

    Google Scholar 

  • —, X. Q. Lan, L. Wang, et al., 2013b: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chin. Sci. Bull., 58, 1355–1362, doi: 10.1007/s11434-012-5654-5.

    Google Scholar 

  • Chen Wen, Graf Han-F, and Huang Ronghui, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 48–60.

    Google Scholar 

  • — and Kang Lihua, 2006: Linkage between the Arctic Oscillation and winter climate over East Asia on the interannual timescale: Roles of quasi-stationary planetary waves. Chinese J. Atmos. Sci., 30, 863–870. (in Chinese)

    Google Scholar 

  • —, and Wei Ke, 2009: Interannual variability of the winter stratospheric polar vortex in the Northern Hemisphere and their relations to QBO and ENSO. Adv. Atmos. Sci., 26, 855–863, doi: 10.1007/s00376-009-8168-6.

    Google Scholar 

  • — and Zhou Qun, 2012: Modulation of the Arctic Oscillation and the East Asian winter climate relationships by the 11-yr solar cycle. Adv. Atmos. Sci., 29, 217–226, doi: 10.1007/s00376-011-1095-3.

    Google Scholar 

  • —, Wei Ke, Wang Lin, et al., 2013c: Climate variability and mechanisms of the East Asian winter monsoon and the impact from the stratosphere. Chinese J. Atmos. Sci., 37, 425–438, doi: 10.3878/j.issn.1006-9895.2012.12309. (in Chinese)

    Google Scholar 

  • Choi, K. S., C. C. Wu, and H. R. Byun, 2012: Possible connection between summer tropical cyclone frequency and spring Arctic Oscillation over East Asia. Climate Dyn., 38, 2613–2629.

    Google Scholar 

  • Christophy, M., U. Ulbrich, and P. Steth, 1997: Midwinter suppression of Northern Hemisphere storm track activity in the real atmosphere and in GCM experiments. J. Atmos. Sci., 54, 1589–1599.

    Google Scholar 

  • Cohen, J., and M. Barlow, 2005: The NAO, the AO, and global warming: How closely related? J. Climate, 18, 4498–4513.

    Google Scholar 

  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.” Geophys. Res. Lett., 27, 779–782.

    Google Scholar 

  • Ding, Y. H., and T. N. Krishnamurti, 1987: Heat budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 115, 2428–2449.

    Google Scholar 

  • Ebisuzaki, W., and M. Chelliah, 1998: ENSO and interdecadal variability in storm tracks over North America and vicinity. Proceedings of the 23rd Annual Climate Diagnostics and Prediction Workshop, NOAA, Miami, FL, 243–246.

    Google Scholar 

  • Feldstein, S. B., 1998: An observational study of the intraseasonal poleward propagation of zonal mean flow anomalies. J. Atmos. Sci., 55, 2516–2529.

    Google Scholar 

  • —, 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13, 4430–4440.

    Google Scholar 

  • —, 2002: Fundamental mechnisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775–796.

    Google Scholar 

  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 2682–2698, doi: 10.1175/JCLI-D-13-00015.1.

    Google Scholar 

  • Gao, H., 2007: Comparision of East Asian winter monsoon indices. Adv. Geosci., 10, 31–37.

    Google Scholar 

  • Geng, Q., and M. Sugi, 2001: Variability of the North Atlantic cyclone activity in winter analyzed from NCEP/NCAR reanalysis data. J. Climate, 14, 3863–3873.

    Google Scholar 

  • Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnection. Bull. Amer. Meteor. Soc., 79, 2715–2725.

    Google Scholar 

  • Gill, A, E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Google Scholar 

  • Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geo-phys. Res. Lett., 28, 2073–2076.

    Google Scholar 

  • —, and C. H. Ho, 2003: Arctic Oscillation signals in East Asian summer monsoon. J. Geophys. Res., 108, D24066, doi:10.1029/2002JD002193.

    Google Scholar 

  • Gu, W., C. Y. Li, W. J. Li, et al., 2009: Interdecadal unstationary relationship between NAO and East China’s summer precipitation patters. Geophys. Res. Lett., 36, L13702, doi:10.1029/2009GL038843.

    Google Scholar 

  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573–2586.

    Google Scholar 

  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 90–92.

    Google Scholar 

  • —, —, —, et al., 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23, 391–405.

    Google Scholar 

  • Honda, M., H. Nakamura, J. Ukita, et al., 2001: Inter-annual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14, 1029–1042.

    Google Scholar 

  • Hsu, H., B. J. Hoskins, and F. Jin, 1990: The 1985/1986 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823–839.

    Google Scholar 

  • Huang Jianping, Ji Minxia, Higuchi Kaz, et al., 2006: Temporal structures of the North Atlantic Oscillation and its impact on the regional climate variability. Adv. Atmos. Sci., 23, 23–32.

    Google Scholar 

  • Huang Ronghui and Wu Yifang, 1989: The influence of ENSO on the summer climate change in China and its mechanisms. Adv. Atmos. Sci., 6, 21–32.

    Google Scholar 

  • —, Chen Wen, Yan Bangliang, et al., 2004: Recent advances in studies of the interaction between the East Asian winter and summer monsoon and ENSO cycle. Adv. Atmos. Sci., 21, 407–424.

    Google Scholar 

  • —, Cai Rongshuo, Chen Jilong, et al., 2006: Interdecaldal variations of drought and flooding disasters in China and their association with the East Asian climate system. Chinese J. Atmos. Sci., 30, 730–743. (in Chinese)

    Google Scholar 

  • —, Wei Ke, Chen Jilong, et al., 2007: The East Asian winter monsoon anomalies in the winters of 2005 and 2006 and their relations to the quasi-stationary planetary wave activity in the Northern Hemisphere. Chinese J. Atmos. Sci., 31, 1033–1048. (in Chinese)

    Google Scholar 

  • Hurrell, J. W., and H. V. Loon, 1997: Decadal variations associated with the North Atlantic oscillation. Climatic Changes, 36, 301–326.

    Google Scholar 

  • James, I. N., and J. P. Dodd, 1996: A mechanism for the low frequency variability of the midlatitude troposphere. Quart. J. Roy. Meteor. Soc., 122, 1197–1210.

    Google Scholar 

  • James, P. M., K. Fraedrich, and I. N. James, 1994: Wave-zonal flow interaction and ultra-low-frequency variability in a simplified global general circulation model. Quart. J. Roy. Meteor. Soc., 120, 1045–1067.

    Google Scholar 

  • Jeong, J. H., and C. H. Ho, 2005: Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, L14704, doi:10.1029/2005GL023024.

    Google Scholar 

  • Jia, X. J., H. Lin, and J. Derome, 2010: Improving seasonal forecast skill of North American surface air temperature in fall using a post-processing method. Mon. Wea. Rev., 138, 1843–1857.

    Google Scholar 

  • —, and —, 2011: Influence of forced large-scale atmospheric patterns on surface air temperature in China. Mon. Wea. Rev., 139, 830–852.

    Google Scholar 

  • —, —, and X. Yao, 2014: The influence of tropical Pacific SST anomaly on surface air temperature in China. J. Climate, 27, 1425–1444.

    Google Scholar 

  • Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 6354–6370.

    Google Scholar 

  • —, and —, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851–867.

    Google Scholar 

  • Ju Jianhua, Ren Juzhang, and Lü Junmei, 2004: Effect of interdecdal variation of Arctic Oscillation on temperature increasing in north of East Asian winter. Plateau Meteor., 23, 429–434. (in Chinese)

    Google Scholar 

  • Kodera, K., 2003: Solar influence on the spatial structure of the NAO during the winter 1900–1999. Geophys. Res. Lett., 30, 1175, doi:10.1029/2002GL016584.

    Google Scholar 

  • Kutzbach, J. E., 1970: Large-csale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon. Wea. Rev., 98, 708–716.

    Google Scholar 

  • L’Heureux, M. L., and R. WayneHiggins, 2007: Boreal winter links between the Madden-Julian oscillation and Arctic oscillation. J. Climate, 21, 3040–3050.

    Google Scholar 

  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation patterns. J. Atmos. Sci., 45, 2718–2743.

    Google Scholar 

  • Lee, S., and S. B. Feldstein, 1996: Mechanism of zonal index evolution in a two-layer model. J. Atmos. Sci., 53, 2232–2246.

    Google Scholar 

  • —, S. Son, K. Grise, et al., 2007: A mechanism for the poleward propagation of zonal mean flow anomalies. J. Atmos. Sci., 64, 849–868.

    Google Scholar 

  • —, and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science, 339, 563–567, doi: 10.112/sci-ence.1225154.

    Google Scholar 

  • Li, S., 2004: Impact of Northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter. J. Meteor. Soc. Japan, 82, 971–988.

    Google Scholar 

  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic oscillation and the Madden-Julian oscillation. J. Climate, 22, 364–380.

    Google Scholar 

  • —, and —, 2011: Impact of the North Atlantic Oscillation on the forecast skill of the Madden-Julian oscillation. Geophys. Res. Lett., 38, L02802, doi:10.1029/2010GL046131.

    Google Scholar 

  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation-West Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 1979–1997.

    Google Scholar 

  • Liu, Q., 1994: On the definition and persistence of blocking. Tellus, 46A, 286–290.

    Google Scholar 

  • Liu, Y. Y., W. Wang, W. Zhou, et al., 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 2817–2839, doi: 10.1007/s00382-014-2163-z.

    Google Scholar 

  • Liu Yuyun, 2013: Temporal variability and spatial structure of the Eurasian teleconnection patterns and their mechanism. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 122 pp. (in Chinese)

    Google Scholar 

  • — and Chen Wen, 2012: Variability of the Eurasian teleconnection pattern in the Northern Hemisphere winter and its influences on the climate in China. Chinese J. Atmos. Sci., 36, 423–432. (in Chinese)

    Google Scholar 

  • — and Wang Lin, 2014: Interdecadal changes of Scandinavian teleconnection pattern in the late 1970s. Climatic Environ. Res., 19, 371–382. (in Chinese)

    Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, et al., 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079.

    Google Scholar 

  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical-extratropical interaction between high-frequency transients and the Madden-Julian oscillation. Mon. Wea. Rev., 127, 661–677.

    Google Scholar 

  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 2763–2768.

    Google Scholar 

  • Meehl, G. A., J. M. Arblaster, G. Branstator, et al., 2008: A coupled air-sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 2883–2897.

    Google Scholar 

  • Murry, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centers from digital data. Part I: Development and operation of the scheme. Aust. Meteorol. Mag., 39, 155–166.

    Google Scholar 

  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 1629–1642.

    Google Scholar 

  • —, and T. Izumi, 1999: Out-of-phase relationship between the interannual fluctuations in poleward heat transport by the East Asian winter monsoon and Pacific storm track. 12th Conference on Atmospheric and Oceanic Fluid Dynamics. American Meteorological Society, New York, 139–142.

    Google Scholar 

  • —, and —, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsson. J. Climate, 15, 1855–1874.

    Google Scholar 

  • —, Y. Tachibana, M. Honda, et al., 2006: Influence of the Northern Hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophys. Res. Lett., 33, L07709, doi:10.1029/2005GL025432.

    Google Scholar 

  • —, —, and H. Shimoda, 2007: Importance of cold and dry surges in substantiating the NAM and ENSO relationship. Geophys. Res. Lett., 34, L22703, doi:10.1029/2007GL031220.

    Google Scholar 

  • Nie, J., P. Wang, W. C. Yang, et al., 2008: Northern Hemisphere storm tracks in strong AO anomaly winters. Atmos. Sci. Lett., 9, 153–159.

    Google Scholar 

  • Palmer, T. N., 1988: Large-scale tropical, extratropical interactions on timescales of a few days to a season. Aust. Meteor. Mag., 36, 107–125.

    Google Scholar 

  • Park, J. Y., S. W. Yeh, J. S. Kug, et al., 2013: Favorable connections between seasonal footprinting mechanism and El Niño. Climate Dyn., 40, 1169–1181, doi: 10.1007/s00382-012-1477-y.

    Google Scholar 

  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217–229, doi: 10.1175/1520-0469.

    Google Scholar 

  • Power, S., T. Casey, C. Folland, et al., 1999: Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319–324.

    Google Scholar 

  • Riehl, H., T. C. Yeh, and N. E. La Seur, 1950: A study of variations of the general circulation. J. Meteor., 7, 181–194.

    Google Scholar 

  • Robinson, W. A., 1993: Mechanism of low-frequency variability in simple model with orgraphy. J. Atmos. Sci., 50, 878–888.

    Google Scholar 

  • —, 2000: Baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415–422.

    Google Scholar 

  • Rogers, J. C., 1981: The North Pacific oscillation. Int. J. Climatol., 1, 39–57.

    Google Scholar 

  • Selten, F. M., G. W. Branstator, H. A. Dijkstra, et al., 2004: Tropical orgins for recent and future Northern Hemisphere climate change. Geophys. Res. Lett., 31, L21205, doi:10.1029/2004GL020739.

    Google Scholar 

  • Semenov, V. A., M. Latif, J. H. Jungclaus, et al., 2008: Is the observed NAO variability during the instrumental record unusual? Geophys. Res. Lett., 35, L11701, doi:10.1029/2008GL033273.

    Google Scholar 

  • Simmonds, I., and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behaviorin the 40-year NCEP-NCAR Reanalysis. J. Climate, 13, 873–885.

    Google Scholar 

  • Straus, D. M., and J. Shukla, 1997: Variations of midlatitude transient dynamics associated with ENSO. J. Atmos. Sci., 54, 777–790.

    Google Scholar 

  • Sun, J., and B. Tan, 2013: Mechanism of the wintertime Aleutian low-Icelandic low seesaw. Geophys. Res. Lett., 40, 4103–4108, doi:10.1002/grl.50770.2013.

    Google Scholar 

  • Suo, L. L., B. K. Tan, and J. Y. Huang, 2009: Further exploration on causes of temperature anomalies associated with the abnormal northern annular mode. Chin. Sci. Bull., 54, 2101–2106. doi: 10.1007/s11434-009-0045-2.

    Google Scholar 

  • Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 4423–4440.

    Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300.

    Google Scholar 

  • —, and —, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016.

    Google Scholar 

  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303–319.

    Google Scholar 

  • van Loon, H., and J. C. Rogers, 1978: The seasaw in winter temperatures between Grenland and Northern Europe. Part I: General description. Mon. Wea. Rev., 106, 296–310.

    Google Scholar 

  • —, and R. A. Madden, 1983: Interannual variations of mean monthly sea-level pressure in January. J. Climate Appl. Meteor., 22, 687–692.

    Google Scholar 

  • —, G. A. Meehl, and D. J. Shea, 2007: Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res., 112, D02108, doi:10.1029/2006JD007378.

    Google Scholar 

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and midlatitudes. Geophys. Res. Lett., 28, 3923–3926, doi:10.1029/2001GL013435.

    Google Scholar 

  • —, J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668–2675.

    Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.

    Google Scholar 

  • —, and D. W. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annual mode: Real or artifact? J. Climate, 15, 1987–1991.

    Google Scholar 

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.

    Google Scholar 

  • Wang, L., W. Chen, and R. H. Huang, 2007: Changes in the variability of North Pacific Oscillation around 1975/1976 and its relationship with East Asian winter climate. J. Geophys. Res., 112, D11110, doi:10.1029/2006JD008054.

    Google Scholar 

  • —, —, and R. H. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, doi:10.1029/2008GL035287.

    Google Scholar 

  • —, —, W. Zhou, et al., 2009a: Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway. J. Climate, 22, 600–614.

    Google Scholar 

  • —, R. Huang, L. Gu, et al., 2009b: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22, 4860–4872.

    Google Scholar 

  • —, W. Chen, W. Zhou, et al., 2010: Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int. J. Climatol., 30, 153–158, doi:10.1002/joc.1876.

    Google Scholar 

  • Wang Lin and Chen Wen, 2010: How well do existing indices measure the strength of the East Asian winter monsoon? Adv. Atmos. Sci., 27, 855–970.

    Google Scholar 

  • —, —, Fong Soikun, et al., 2011: The seasonal march of the North Pacific Oscillation and its association with the interannual variations of China’s climate in boreal winter and spring. Chinese J. Atmos. Sci., 35, 393–402. (in Chinese)

    Google Scholar 

  • Wang Xinmin, Zhai Panmao, and Wang Cuicui, 2009: Variations in extratropical cyclone activity in northern East Asia. Adv. Atmos. Sci., 26, 471–479.

    Google Scholar 

  • Wei, K., W. Chen, and R. H. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34, L16814, doi:10.1029/2007GL030478.

    Google Scholar 

  • Wei Ke, Chen Wen, and Zhou Wen, 2011: Changes in the East Asian cold season since 2000. Adv. Atmos. Sci., 28, 69–79, doi: 10.1007/s00376-010-9232-y.

    Google Scholar 

  • Wen, M., S. Yang, A. Kumar, et al. 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 1111–1131.

    Google Scholar 

  • Wu, B. Y., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 3-1–3-4, doi:10.1029/2002GL015373.

    Google Scholar 

  • Wu, Z. W., B. Wang, J. P. Li, et al., 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.

    Google Scholar 

  • Xu, M., C. P. Chang, C. B. Fu, et al., 2006: Steady decline of East Asian monsoon winds, 1969–2000: Evidence from direct ground meassurements of wind speed. J. Goephys. Res., 111, D24111, doi:10.1029/2006JD007337.

    Google Scholar 

  • Yang, W. C., J. Nie, P. Lin, et al., 2007: Baroclinic wave packets in an extended quasigeostrophic two-layer model. Geophys. Res. Lett., 34, L05822, doi:10.1029/2006GL029077.

    Google Scholar 

  • Yang Xiuqun, Zhu Yimin, Xie Qian, et al., 2004: Advances in studies of Pacific Decadal Oscillation. Chinese J. Atmos. Sci., 28, 979–992. (in Chinese)

    Google Scholar 

  • Yu, J. Y., and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50, 3244–3259.

    Google Scholar 

  • Yuan, J., S. Lee, S. B. Feilstein, et al., 2011: The relationship between the North Atlantic jet and tropical convection over the Indian and West Pacific oceans. J. Climate, 24, 6100–6113, doi:10.1175/2011JCL14203.1.

    Google Scholar 

  • —, —, and B. Tan, 2013: Observational evidence for the mechanism of the poleward propagation of zonal wind anomalies over the North Atlantic. Quart. J. Roy. Meteor. Soc., 139, 992–998, doi:10.1002/qj.2010.

    Google Scholar 

  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the 86/87 and 91/92 events. J. Meteor. Soc. Japan, 74, 49–62.

    Google Scholar 

  • Zhang, Y. Q., and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56, 3416–3435.

    Google Scholar 

  • Zhang Yingxian, Ding Yihui, and Li Qiaoping, 2012: Interdecadal variations of extratropical cyclone activities and storm tracks in the Northern Hemisphere. Chinese J. Atmos. Sci., 36, 912–928. (in Chinese)

    Google Scholar 

  • Zhou, Q., W. Chen, and W. Zhou, 2013: Solar cycle modulation of the ENSO impact on the winter climate of East Asia. J. Geophys. Res. Atmos., 118, 5111–5119, doi: 10.1002/jgrd.50453.

    Google Scholar 

  • Zhou, S., and A. J. Miller, 2005: The interaction of the Madden-Julian oscillation and the Arctic Oscillation. J. Climate, 18, 143–159.

    Google Scholar 

  • Zhou, W., C. Y. Li, and J. C. L. Chan, 2006: The inter-decadal variations of the summer monsoon rainfall over South China. Meteor. Atmos. Phys., 93, 165–175, doi: 10.1007/s00703-006-0184-9.

    Google Scholar 

  • —, J. C. L. Chan, W. Chen, et al., 2009: Synopticscale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 3978–3991.

    Google Scholar 

  • Zhou Putian, Suo Lingling, Yuan Jiacan, et al., 2012: The East Pacific wavetrain: Its variability and impact on the atmospheric circulation in boreal winter. Adv. Atmos. Sci., 29, 471–483.

    Google Scholar 

  • Zhou Qun, 2013: Impacts of 11-year solar cycle on East Asian climate and its mechanism. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 112 pp. (in Chinese)

    Google Scholar 

  • — and Chen Wen, 2012: Influence of the 11-year solar cycle on the evolution of ENSO-related SST anomalies and rainfall anomalies in East Asia. Chinese J. Atmos. Sci., 36, 851–862. (in Chinese)

    Google Scholar 

  • Zhu Qiangen, Lin Jinrui, Shou Shaowen, et al., 2000: Principles of Synoptic Meteorology. China Meteorological Press, Beijing, 647 pp. (in Chinese)

    Google Scholar 

  • Zhu Yimin, Yang Xiuqun, Xie Qian, et al., 2008: Joint variation mode between the winter SST in Pacific and anomalous atmospheric circulation in the midlatitudes of Northern Hemisphere. Prog. Nat. Sci., 18, 161–171. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen  (陈 文).

Additional information

Supported by the National Natural Science Foundation of China (41025017, 41230527, 41130962, and 41375060).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Chen, W. Progress in the study of the dynamics of extratropical atmospheric teleconnection patterns and their impacts on East Asian climate. J Meteorol Res 28, 780–802 (2014). https://doi.org/10.1007/s13351-014-4041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-4041-3

Key words

Navigation