Skip to main content
Log in

Planetary-scale wave structures of the earth’s atmosphere revealed from the COSMIC observations

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

GPS radio occultation (GPS RO) method, an active satellite-to-satellite remote sensing technique, is capable of producing accurate, all-weather, round the clock, global refractive index, density, pressure, and temperature profiles of the troposphere and stratosphere. This study presents planetary-scale equatorially trapped Kelvin waves in temperature profiles retrieved using COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) satellites during 2006–2009 and their interactions with background atmospheric conditions. It is found that the Kelvin waves are not only associated with wave periods of higher than 10 days (slow Kelvin waves) with higher zonal wave numbers (either 1 or 2), but also possessing downward phase progression, giving evidence that the source regions of them are located at lower altitudes. A thorough verification of outgoing longwave radiation (OLR) reveals that deep convection activity has developed regularly over the Indonesian region, suggesting that the Kelvin waves are driven by the convective activity. The derived Kelvin waves show enhanced (diminished) tendencies during westward (eastward) phase of the quasi-biennial oscillation (QBO) in zonal winds, implying a mutual relation between both of them. The El Niño and Southern Oscillation (ENSO) below 18 km and the QBO features between 18 and 27 km in temperature profiles are observed during May 2006–May 2010 with the help of an adaptive data analysis technique known as Hilbert Huang Transform (HHT). Further, temperature anomalies computed using COSMIC retrieved temperatures are critically evaluated during different phases of ENSO, which has revealed interesting results and are discussed in light of available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. J., and J. R. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54, 408–419.

    Article  Google Scholar 

  • Alexander, S. P., T. Tsuda, Y. Kawatani, et al., 2008: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113, D24115.

    Article  Google Scholar 

  • Angell, J. K., and J. Korshover, 1964: Quasibiennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479–492.

    Article  Google Scholar 

  • Anthes, R. A., D. Ector, D. C. Hunt, et al., 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313–333.

    Article  Google Scholar 

  • —, 2011: Exploring earth’s atmosphere with radio occultation: Contributions to weather, climate, and space weather. Atmos. Meas. Tech., 4, 1077–1103.

    Article  Google Scholar 

  • Ao, C. O., G. A. Hajj, T. K. Meehan, et al., 2009: Rising and setting GPS occultations by use of open-loop tracking. J. Geophys. Res., 114, D04101, doi: 10.1029/2008JD010483.

    Google Scholar 

  • Baldwin, M. P., L. J. Gray, T. J. Dunkerton, et al., 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179–229.

    Article  Google Scholar 

  • Brahmanandam, P. S, Y. H. Chu, and J. Liu, 2010: Observations of equatorial Kelvin wave modes in FORMOSAT-3/COSMIC GPS RO temperature profiles. Terr. Atmos. Ocean. Sci., 21(5), 829–840.

    Article  Google Scholar 

  • —, Y. H. Chu, K.-H. Wu, et al., 2011: Vertical and longitudinal electron density structures of equatorial Eand F-regions. Ann. Geophys., 29, 81–89.

    Article  Google Scholar 

  • —, U. Gouthu, J. Y. Liu, et al., 2012: Global S4 index variations observed using FORMOSAT-3/COSMIC GPS RO technique during a solar minimum year. J. Geophys. Res., 117, A09322, doi: 10.1029/2012JA017966.

    Google Scholar 

  • Canziani, P. O., J. R. Holton, E. F. Fishbein, et al., 1994: Equatorial Kelvin waves: A UARS MLS view. J. Atmos. Sci., 51, 3053–3076.

    Article  Google Scholar 

  • —, and J. R. Holton, 1998: Kelvin waves and the quasibiennial oscillation: An observational analysis. J. Geophys. Res., 103, 31509–31521.

    Article  Google Scholar 

  • Chu, Y.-H., P. S. Brahmanandam, C.-Y. Wang, et al., 2011: Coordinated sporadic E-layer observations made with Chung-Li 30 MHz radar, ionosonde and FORMOSAT-3/COSMIC satellites. J. Atmos. Terr. Phys., 73, 883–894.

    Article  Google Scholar 

  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26053–26076.

    Article  Google Scholar 

  • Ern, M., P. Preusse, M. Krebsbach, et al., 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 845–869.

    Article  Google Scholar 

  • Evan, S., M. J. Alexander, and J. Dudhia, 2012: WRF simulations of convectively-generated gravity waves in opposite QBO phases. J. Geophys. Res., 117, 1–17.

    Google Scholar 

  • Fjeldbo, G., A. J. Kliore, and V. R. Eshleman, 1971: The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. The Astronomical Journal, 76, 123–140.

    Article  Google Scholar 

  • Fujiwara, M., K. Kita, and T. Ogawa, 1998: Stratosphere-troposphere exchange of ozone associated with the equatorial Kelvin wave as observed with ozonesondes and rawinsondes. J. Geophys. Res., 103, 19173–19182.

    Article  Google Scholar 

  • —, F. Hasebe, M. Shiotani, et al., 2001: Water vapor control at the tropopause by equatorial Kelvin waves observed over the Galápagos. Geophys. Res. Lett., 28, 3143–3146.

    Article  Google Scholar 

  • —, S.-P. Xie, M. Shiotani, et al., 2003: Uppertropospheric inversion and easterly jet in the tropics. J. Geophys. Res., 108, 4796, doi: 10.1029/2003JD003928.

    Google Scholar 

  • Garcia, R. R., and M. L. Salby, 1987: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior. J. Atmos. Sci., 44, 499–532.

    Article  Google Scholar 

  • Hajj, G. A., C. O. Ao, B. A. Iijima, et al., 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109, doi: 10.1029/2003JD003909.

  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 1579–1604.

    Article  Google Scholar 

  • Hitchman, M. H., and C. B. Leovy, 1988: Estimation of the Kelvin wave contribution to the semiannual oscillation. J. Atmos. Sci., 45, 1462–1475.

    Article  Google Scholar 

  • Holton, James R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 1076–1080.

    Article  Google Scholar 

  • Huang, N. E., Z. Shen, S. R. Long, et al., 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 454, 903–993, doi: 10.1098/rspa.1998.0193.

    Article  Google Scholar 

  • —, and Z. H. Wu, 2008: A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi: 10.1029/2007RG000228.

    Article  Google Scholar 

  • Kawatani, Y., S. Watanabe, K. Sato, et al., 2010: The roles of equatorial trapped waves and internal inertia-gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67(4), 963–980.

    Article  Google Scholar 

  • Kishore, P., S. P. Namboothiri, J. H. Jiang, et al., 2009: Global temperature estimates in the troposphere and stratosphere: A validation study of COSMIC/FORMOSAT-3 measurements. Atmos. Chem. Phys., 9, 897–908.

    Article  Google Scholar 

  • Lindzen, R. S., 2003: The interaction of waves and convection in the tropics. J. Atmos. Sci., 60, 3009–3020.

    Article  Google Scholar 

  • Mannucci, A. J., S. T. Lowe, C. O. Ao, et al., 2012: New science opportunities on COSMIC-2/FORMOSAT-7. Sixth COSMIC/FORMOSAT-3 Data User’s Workshop, Boulder, Colorado, USA.

    Google Scholar 

  • Melbourne, W. G., E. S. Davis, G. A. Hajj, et al., 1994: The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring. JPL Publication, 147 pp.

    Google Scholar 

  • Mote, P. W., T. J. Dunkerton, and D. Wu, 2002: Kelvin waves in stratospheric temperature observed by the Microwave Limb Sounder. J. Geophys. Res., 107(D14), 4218.

    Article  Google Scholar 

  • Pires, P., J.-L. Redelsperger, and J.-P. Lafore, 1997: Equatorial atmospheric waves and their association to convection. Mon. Wea. Rev., 125, 1167–1184.

    Article  Google Scholar 

  • Potula, B. S., Y.-H. Chu, G. Uma, et al., 2011: A global comparative study on the ionospheric measurements between COSMIC radio occultation technique and IRI model. J. Geophys. Res., 116, A02310, doi: 10.1029/2010JA015814.

    Google Scholar 

  • Randel, W. J., F. Wu, and W. Rivera Ríos, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108(D1), 4024, doi: 10.1029/2002JD002595.

    Article  Google Scholar 

  • —, and —, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, doi: 10.1029/2004JD005006.

  • —, K. P. Shine, J. Austin, et al., 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi: 10.1029/2008JD010421.

    Google Scholar 

  • Rao, D. N., M. Venkat Ratnam, S. K. Mehta, et al., 2009: Validation of the COSMIC radio occultation data over Gadanki (13.48°N, 79.2°E): A tropical region. Terr. Atmos. Ocean. Sci., 20, 59–70.

    Article  Google Scholar 

  • Ratnam, M. V., T. Tsuda, T. Kozu, et al., 2006: Longterm behavior of the Kelvin waves revealed by CHAMP/GPS RO measurements and their effects on the tropopause structure. Ann. Geophys., 24, 1355–1366.

    Article  Google Scholar 

  • Salby, M. L., D. L. Hartmann, P. L. Bailey, et al., 1984: Evidence for equatorial Kelvin modes in Nimbus-7 LIMS. J. Atmos. Sci., 41, 220–235.

    Article  Google Scholar 

  • —, and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458–498.

    Article  Google Scholar 

  • Sasi, M. N., and V. Deepa, 2001: Seasonal variation of equatorial wave momentum fluxes at Gadanki (13.5°N, 79.2°E). Ann. Geophys., 19, 985–990, doi: 10.5194/angeo-19-985-2001.

    Article  Google Scholar 

  • Scherllin-Pirscher, B., C. Deser, S.-P. Ho, et al., 2012: The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys. Res. Lett., 39, L20801, doi: 10.1029/2012GL053071.

    Google Scholar 

  • Seidel, D. J., R. J. Ross, J. K. Angell, et al., 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 7857–7878.

    Article  Google Scholar 

  • Shiotani, M., and T. Horinouchi, 1993: Kelvin wave activity and the quasi-biennial oscillation in the equatorial lower stratosphere. J. Meteor. Soc. Japan., 71, 175–182.

    Google Scholar 

  • —, J. C. Gille, and A. E. Roche, 1997: Kelvin waves in the equatorial lower stratosphere as revealed by cryogenic limb array etalon spectrometer temperature data. J. Geophys. Res., 102, 26131–26140.

    Article  Google Scholar 

  • Smith, A. K., P. Preusse, and J. Oberheide, 2002: Middle atmosphere Kelvin waves observed in Cryogenic infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) 1 and 2 temperature and trace species. J. Geophys. Res., 107, doi: 10.1029/2001JD000577.

  • Sridharan, S., T. Tsuda, T. Nakamura, et al., 2006: Observations of the 7-day Kelvin wave in the tropical atmosphere during the CPEA campaign. J. Meteor. Soc. Japan, 84a, 259–275.

    Article  Google Scholar 

  • Steiner, A. K., B. C. Lackner, F. Ladstädter, et al., 2011: GPS radio occultation for climate monitoring and change detection. Radio Sci., 46, RS0D24, doi: 10.1029/2010RS004614.

    Article  Google Scholar 

  • Sun, B. M., A. Reale, D. J. Seidel, et al., 2010: Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104.

    Article  Google Scholar 

  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006a: Equatorial waves in the lower stratosphere. Part I: A novel detection method. Quart. J. Roy. Meteor. Soc., 132, 177–194.

    Article  Google Scholar 

  • —, —, —, 2006b: Equatorial waves in the lower stratosphere. Part II: Annual and interannual variability. Quart. J. Roy. Meteor. Soc., 132, 195–212.

    Article  Google Scholar 

  • Tsuda, T., Y. Murayama, H. Wiryosumarto, et al., 1994: Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 1. Equatorial waves and diurnal tides. J. Geophys. Res., 99, 10491–10505.

    Article  Google Scholar 

  • Uma, G., J. Y. Liu, S. P. Chen, et al., 2012: A comparison of the equatorial spread F derived by the international reference ionosphere and the S4 index observed by FORMOSAT-3/COSMIC during the solar minimum period of 2007–2009. Earth Planets Space, 64, 467–471.

    Article  Google Scholar 

  • Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900–907.

    Article  Google Scholar 

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.

    Article  Google Scholar 

  • Wickert, J., C. Reigber, G. Beyerle, et al., 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28(17), 3263–3266.

    Article  Google Scholar 

  • Wu, Z., N. Huang, and Y. Chen, 2009: The multidimensional ensemble empirical mode decomposition method. Advances in Adaptive Data Analysis, 1, 339–372.

    Article  Google Scholar 

  • Yang, G. Y., and B. Hoskins, 2013: ENSO impact on Kelvin waves and associated tropical convection. J. Atmos. Sci., doi: 10.1175/JAS-D-13-081.1.

    Google Scholar 

  • Zhang, K., E. Fu, D. Silcock, et al., 2011: An investigation of atmospheric temperature profiles in the Australian region using collocated GPS radio occultation and radiosonde data. Atmos. Meas. Tech., 4, 2087–2092.

    Article  Google Scholar 

  • Zeng, Z., S.-P. Ho, S. Sokolovskiy, et al., 2012: Structural evolution of the Madden-Julian Oscillation from COSMIC radio occultation data. J. Geophys. Res., 117, D22108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Brahmanandam.

Additional information

Supported by the Science Council of Taiwan (NSC-101-2811-M-008-012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisetty, S.K.A.V.P.R., Brahmanandam, P.S., Uma, G. et al. Planetary-scale wave structures of the earth’s atmosphere revealed from the COSMIC observations. J Meteorol Res 28, 281–295 (2014). https://doi.org/10.1007/s13351-014-0101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-0101-y

Key words

Navigation