Skip to main content

Advertisement

Log in

Thermosensitive and mucoadhesive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan for the treatment of oral squamous cell carcinoma

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Buccal drug administration may be chosen as a medication route to treat various diseases for local or systemic effects. This study proposes the development of a thermosensitive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan to increase mucoadhesion, circumventing several limitations of this route of administration. Hydroxypropylmethylcellulose and Poloxamer® 407 were incorporated for hydrogel production. Physicochemical characterization parameters, such as particle size distribution, mean diameter, polydispersity index, zeta potential, and morphology, were analyzed. Spherical homogeneous particles were obtained with average diameter, of 173 ± 22 nm for LNCc (curcumin lipid-core nanocapsules) and 179 ± 48 nm for CLNCc (chitosan-curcumin lipid-core nanocapsules). A PDI equal to 0.09 ± 0.02 for LNCc and 0.26 ± 0.01 for CLNCc confirmed homogeneity. Tensile analysis and washability test on porcine buccal mucosa indicated higher mucoadhesion for hydrogels in comparison to the nanocapsules in suspension, remaining on the mucous membrane up to 8 h (10.92 ± 3.95 µg of curcumin washed for H-LNCc and 28.41 ± 24.47 µg for H-CLNCc) versus the latter, which remained washed on the membrane for 90 min only (62.60 ± 4.72 µg for LNCc and 52.08 ± 1.63 µg for CLNCc). The irritant potential (IR) of the formulations was evaluated by the hen’s egg chorioallantoic membrane test (HET-CAM), with no irritation phenomena observed. Formulations were tested for their efficacy in an in vitro model against oral squamous cancer cell line, showing a significant reduction in cell viability on all tested groups. These findings demonstrated that the proposed nanosystem is mucoadhesive and has potential to deliver buccal treatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

LNCc:

Curcumin lipid-core nanocapsules

CLNCc:

Chitosan-curcumin lipid-core nanocapsules

CLNC:

Chitosan-coated lipid-core nanocapsules

References

  1. Carvalho FC, Bruschi ML, Evangelista RC, Gremião MPD. Mucoadhesive drug delivery systems. Braz J Pharm Sci. 2010;46:1–17. https://doi.org/10.1590/S1984-82502010000100002.

    Article  CAS  Google Scholar 

  2. Chatterjee B, Amalina N, Sengupta P, Mandal UK. Mucoadhesive polymers and their mode of action: a recent update. J Appl Pharm Sci. 2017;7(05):195–203. https://doi.org/10.7324/JAPS.2017.70533.

  3. Da Silva Barbi M, Carvalho FC, Kiill CP, Da Silva Barud H, Santagneli SH, Ribeiro SJL, Gremião MPD. Preparation and characterization of chitosan nanoparticles for zidovudine nasal delivery. J Nanosci Nanotechnol. 2015;15(1):865–74. https://doi.org/10.1166/jnn.2015.9180.

    Article  CAS  Google Scholar 

  4. Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomed. 2017;12:6027. https://doi.org/10.2147/IJN.S132434.

    Article  CAS  Google Scholar 

  5. El-Malek FFA, Yousef AS, El-Assar SA. Hydrogel film loaded with new formula from manuka honey for treatment of chronic wound infections. Journal of global antimicrobial resistance. 2017;11:171–6. https://doi.org/10.1016/j.jgar.2017.08.007.

    Article  Google Scholar 

  6. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv. 2014;32(6):1053–64. https://doi.org/10.1016/j.biotechadv.2014.04.004.

    Article  CAS  Google Scholar 

  7. dos Santos Chaves P, Ourique AF, Frank LA, Pohlmann AR, Guterres SS, Beck RC. Carvedilol-loaded nanocapsules: mucoadhesive properties and permeability across the sublingual mucosa. Eur J Pharm Biopharm. 2017;114:88–95. https://doi.org/10.1016/j.ejpb.2017.01.007.

  8. Contri RV, Katzer T, Pohlmann AR, Guterres SS. Chitosan hydrogel containing capsaicinoids-loaded nanocapsules: an innovative formulation for topical delivery. Soft Mater. 2010;8(4):370–85. https://doi.org/10.1080/1539445X.2010.525161.

    Article  CAS  Google Scholar 

  9. Singh I, Pawar P, Sanusi EA, Odeku OA. Mucoadhesive polymers for drug delivery systems. Adhesion Pharm Biomed Dental Fields John Wiley & Sons, Inc. 2017;89–113. https://doi.org/10.1002/9781119323716.ch5.

  10. Cé R, Marchi JG, Bergamo VZ, Fuentefria AM, Lavayen V, Guterres SS, Pohlmann AR. Chitosan-coated dapsone-loaded lipid-core nanocapsules: growth inhibition of clinical isolates, multidrug-resistant Staphylococcus aureus and Aspergillus ssp. Colloids Surf, A. 2016;511:153–61. https://doi.org/10.1016/j.colsurfa.2016.09.086.

    Article  CAS  Google Scholar 

  11. Frank LA, Sandri G, D’Autilia F, Contri RV, Bonferoni MC, Caramella C, Guterres SS. Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. Int J Nanomed. 2014;9(1):3151–61. https://doi.org/10.2147/IJN.S62599.

    Article  CAS  Google Scholar 

  12. Mazzarino L, Borsali R, Lemos-Senna E. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release. J Pharm Sci. 2014;103(11):3764–71. https://doi.org/10.1002/jps.24142.

    Article  CAS  Google Scholar 

  13. Kaur P, Garg T, Vaidya B, Prakash A, Rath G, Goyal AK. Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: behavioral and biochemical assessment. J Drug Target. 2015;23(3):275–86. https://doi.org/10.3109/1061186X.2014.994097.

    Article  CAS  Google Scholar 

  14. Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon. 2017;3(8): e00390. https://doi.org/10.1016/j.heliyon.2017.e00390.

    Article  Google Scholar 

  15. Parhi R, Suresh P, Pattnaik S. Transdermal delivery of diltiazem hydrochloride from poloxamer-HPMC gel: in vitro, ex vivo, and in vivo studies. Drug Deliv Lett. 2015;5(3):163–72. https://doi.org/10.2174/221030310503160401120711.

    Article  CAS  Google Scholar 

  16. Zatta KC, Frank LA, Reolon LA, Amaral-Machado L, Egito EST, Gremião MPD, Guterres SS. An inhalable powder formulation based on micro-and nanoparticles containing 5-fluorouracil for the treatment of metastatic melanoma. Nanomaterials. 2018;8(2):75. https://doi.org/10.3390/nano8020075.

    Article  CAS  Google Scholar 

  17. Coradini K, Lima FO, Oliveira CM, Chaves PS, Athayde ML, Carvalho LM, Beck RCR. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur J Pharm Biopharm. 2014;88(1):178–85. https://doi.org/10.1016/j.ejpb.2014.04.009.

    Article  CAS  Google Scholar 

  18. Bender EA, Adorne MD, Colomé LM, Abdalla DSP, Guterres SS, Pohlmann AR. Hemocompatibility of poly (ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm. 2012;426(1–2):271–9. https://doi.org/10.1016/j.ijpharm.2012.01.051.

    Article  CAS  Google Scholar 

  19. Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal applications of poloxamer 407-based hydrogels: an overview. Pharmaceutics. 2018;10(3):159. https://doi.org/10.3390/pharmaceutics10030159.

    Article  CAS  Google Scholar 

  20. Pereira GG, Dimer FA, Guterres SS, Kechinski CP, Granada JE, Cardozo NSM. Formulation and characterization of poloxamer 407®: thermoreversible gel containing polymeric microparticles and hyaluronic acid. Quim Nova. 2013;36(8):1121–5. https://doi.org/10.1590/S0100-40422013000800008.

    Article  CAS  Google Scholar 

  21. Hazzah HA, Farid RM, Nasra MMA, Zakaria M, Gawish Y, El-Massik MA, Abdallah OY. A new approach for treatment of precancerous lesions with curcumin solid–lipid nanoparticle-loaded gels: in vitro and clinical evaluation. Drug Delivery. 2016;23(4):1409–19. https://doi.org/10.3109/10717544.2015.1065524.

    Article  CAS  Google Scholar 

  22. De Almeida PDV, Grégio AMT, Machado MÂN, De Lima AAS, Azevedo LR. Saliva composition and functions: a comprehensive review. J Contemp Dent Pract. 2008;9(3):72–80. https://doi.org/10.5005/jcdp-9-3-72.

    Article  Google Scholar 

  23. Lee HM, Patel V, Shyur LF, Lee WL. Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells. Phytomedicine. 2016;23(12):1535–44. https://doi.org/10.1016/j.phymed.2016.09.005.

    Article  CAS  Google Scholar 

  24. Antonow MB, Asbahr ACC, Raddatz P, Beckenkamp A, Buffon A, Guterres SS, Pohlmann AR. Liquid formulation containing doxorubicin-loaded lipid-core nanocapsules: cytotoxicity in human breast cancer cell line and in vitro uptake mechanism. Mater Sci Eng, C. 2017;76:374–82. https://doi.org/10.1016/j.msec.2017.03.099.

    Article  CAS  Google Scholar 

  25. Pohlmann M, Paese K, Frank LA, Guterres SS. Production, characterization and application of nanotechnology-based vegetable multi-component theospheres in nonwovens: a women's intimate hygiene approach. Textile Res J. 2018;88(20):2292–2302. https://doi.org/10.1177/0040517517720500.

  26. Cardoso AM, de Oliveira EG, Coradini K, Bruinsmann FA, Aguirre T, Lorenzoni R, Beck RCR. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: skin permeation/penetration and efficacy in wound healing. Mater Sci Eng, C. 2019;96:205–17. https://doi.org/10.1016/j.msec.2018.11.013.

    Article  CAS  Google Scholar 

  27. Puri V, Sharma A, Maman P, Rathore N, Singh I. Overview of mucoadhesive biopolymers for buccal drug delivery systems. Int J App Pharm. 2019;11(6):18–29. https://doi.org/10.22159/ijap.2019v11i6.35438.

  28. Venturini CG, Bruinsmann FA, Oliveira CP, Contri RV, Pohlmann AR, Guterres SS. Vegetable oil-loaded nanocapsules: innovative alternative for incorporating drugs for parenteral administration. J Nanosci Nanotechnol. 2016;16(2):1310–20. https://doi.org/10.1166/jnn.2016.11666.

    Article  CAS  Google Scholar 

  29. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29. https://doi.org/10.1016/j.jcis.2010.05.022.

    Article  CAS  Google Scholar 

  30. Parhi R. Development and optimization of pluronic® F127 and HPMC based thermosensitive gel for the skin delivery of metoprolol succinate. Journal of Drug Delivery Science and Technology. 2016;36:23–33. https://doi.org/10.1016/j.jddst.2016.09.004.

    Article  CAS  Google Scholar 

  31. Paese K, Jäger A, Poletto FS, Pinto EF, Rossi-Bergmann B, Pohlmann AR, Guterres SS. Semisolid formulation containing a nanoencapsulated sunscreen: effectiveness, in vitro photostability and immune response. J Biomed Nanotechnol. 2009;5(3):240–6. https://doi.org/10.1166/jbn.2009.1028.

    Article  CAS  Google Scholar 

  32. Siqueira NM, Contri RV, Paese K, Beck RCR, Pohlmann AR, Guterres SS. Innovative sunscreen formulation based on benzophenone-3-loaded chitosan-coated polymeric nanocapsules. Skin pharmacology and physiology. 2011;24(3):166–74. https://doi.org/10.1159/000323273.

    Article  CAS  Google Scholar 

  33. Cho HJ, Balakrishnan P, Park EK, Song KW, Hong SS, Jang TY, Kim DD. Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J Pharm Sci. 2011;100(2):681–91. https://doi.org/10.1002/jps.22314.

    Article  CAS  Google Scholar 

  34. Koffi AA, Agnely F, Ponchel G, Grossiord JL. Modulation of the rheological and mucoadhesive properties of thermosensitive poloxamer-based hydrogels intended for the rectal administration of quinine. Eur J Pharm Sci. 2006;27(4):328–35. https://doi.org/10.1016/j.ejps.2005.11.001.

    Article  CAS  Google Scholar 

  35. Al-Kassas R, Wen J, Cheng AEM, Kim AMJ, Liu SSM, Yu J. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohyd Polym. 2016;153:176–86. https://doi.org/10.1016/j.carbpol.2016.06.096.

    Article  CAS  Google Scholar 

  36. Fathalla ZM, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, Alany RG. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharm Biopharm. 2017;114:119–134. https://doi.org/10.1016/j.ejpb.2017.01.008.

  37. Sheshala R, Quah SY, Tan GC, Meka VS, Jnanendrappa N, Sahu PS. Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Deliv Transl Res. 2019;9(2):434–43. https://doi.org/10.1007/s13346-018-0488-6.

    Article  CAS  Google Scholar 

  38. Fathalla Z, Mustafa WW, Abdelkader H, Moharram H, Sabry AM, Alany RG. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine. Drug Delivery. 2022;29(1):374–85. https://doi.org/10.1080/10717544.2021.2023236.

    Article  CAS  Google Scholar 

  39. Giuliano E, Paolino D, Fresta M, Cosco D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines. 2019;6(1):7. https://doi.org/10.3390/medicines6010007.

    Article  CAS  Google Scholar 

  40. Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Delivery. 2007;14(8):507–15. https://doi.org/10.1080/10717540701606426.

    Article  CAS  Google Scholar 

  41. Zhen L, Fan D, Yi X, Cao X, Chen D, Wang L. Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int J Clin Exp Pathol. 2014;7(10):6438.

    Google Scholar 

  42. Sarangapani S, Patil A, Ngeow YK, Elsa Mohan R, Asundi A, Lang MJ. Chitosan nanoparticles’ functionality as redox active drugs through cytotoxicity, radical scavenging and cellular behaviour. Integr Biol. 2018;10(5):313–24. https://doi.org/10.1039/c8ib00038g.

    Article  CAS  Google Scholar 

  43. Mazzarino L, Loch-Neckel G, Dos Santos Bubniak L, Mazzucco S, Santos-Silva MC, Borsali R, Lemos-Senna E. Curcumin-loaded chitosan-coated nanoparticles as a new approach for the local treatment of oral cavity cancer. J Nanosci Nanotechnol. 2015;15(1):781–91. https://doi.org/10.1166/jnn.2015.9189.

    Article  CAS  Google Scholar 

  44. Suresh K, Nangia A. Curcumin: Pharmaceutical solids as a platform to improve solubility and bioavailability. CrystEngComm. 2018;20(24):3277–96. https://doi.org/10.1039/c8ce00469b.

    Article  CAS  Google Scholar 

  45. Lin HY, Thomas JL, Chen HW, Shen CM, Yang WJ, Lee MH. In vitro suppression of oral squamous cell carcinoma growth by ultrasound-mediated delivery of curcumin microemulsions. Int J Nanomed. 2012;7:941. https://doi.org/10.2147/IJN.S28510.

    Article  CAS  Google Scholar 

  46. Chen Y, Lu Y, Lee RJ, Xiang G. Nano encapsulated curcumin: and its potential for biomedical applications. Int J Nanomed. 2020;15:3099. https://doi.org/10.2147/IJN.S210320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Avian Facility for Teaching and Research (Department of Zootechnics, UFRGS, Porto Alegre, Brazil) and Slaughterhouse Ouro Do Sul for donating the chicken eggs and porcine buccal mucosa, respectively. The authors would also like to thank Professor César Petzhold and Grasiela Gheno, from the Department of Organic Chemistry of the Institute of Chemistry at Universidade Federal do Rio Grande do Sul, for their collaboration in the operation of the rheometer and for the assistance in analyzing the data of the rheology test.

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS (ARD 17/2551–0000-838–3). Moreover, this study was financed partially by the Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPQ. Ana Ortega thanks the Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES—for her fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Karina Paese.

Ethics declarations

Animal studies

No animal or human studies were carried out by the authors for this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, A., da Silva, A.B., da Costa, L.M. et al. Thermosensitive and mucoadhesive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan for the treatment of oral squamous cell carcinoma. Drug Deliv. and Transl. Res. 13, 642–657 (2023). https://doi.org/10.1007/s13346-022-01227-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01227-1

Keywords

Navigation