Skip to main content

Advertisement

Log in

Dispersion profile of a needle-free jet injection depends on the interfacial property of the medium

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Injections into or through the skin are common drug or vaccine administration routes, which can be achieved with conventional needles, microneedles, or needle-free jet injections (NFJI). Understanding the transport mechanism of these injected fluids is critical for the development of effective drug administration devices. NFJI devices are distinct from traditional injection techniques by their route and time scale, which relies on a propelled microjet with sufficient energy to penetrate the skin surface and deliver the drug into the targeted region. The injected fluid interacts with multiple skin tissue layers and interfaces, which implies that the corresponding injection profile is dependent on their mechanical properties. In this study, we address the lack of fundamental knowledge on the impact of these interfaces on the injection profiles of NFJI devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hettinga J, Carlisle R. Vaccination into the dermal compartment: techniques challenges and prospects. Vaccines. 2020;8:534. https://doi.org/10.3390/vaccines8030534.

    Article  CAS  PubMed Central  Google Scholar 

  2. Weniger BG, Papania MJ. Alternative vaccine delivery methods Vaccines. 2013;2013:1200–31. https://doi.org/10.1016/B978-1-4557-0090-5.00063-X.

    Article  Google Scholar 

  3. Guillot AJ, Cordeiro AS, Donnelly RF, Montesinos MC, Garrigues TM, Melero A. Microneedle-based delivery: an overview of current applications and trends. Pharmaceutics. 2020;12:569. https://doi.org/10.3390/pharmaceutics12060569.

    Article  CAS  PubMed Central  Google Scholar 

  4. Kim H, Park H, Lee SJ. Effective method for drug injection into subcutaneous tissue. Sci Rep. 2017;7:9613. https://doi.org/10.1038/s41598-017-10110-w.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mohizin A, Kim JK. Current engineering and clinical aspects of needle-free injectors: a review. J Mech Sci Technol. 2018;32:5737–47. https://doi.org/10.1007/s12206-018-1121-9.

    Article  Google Scholar 

  6. Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication drug delivery and safety. Drug Deliv. 2010;17:187–207. https://doi.org/10.3109/10717541003667798.

    Article  CAS  PubMed  Google Scholar 

  7. Shergold OA, Fleck NA. Mechanisms of deep penetration of soft solids, with application to the injection and wounding of skin. Proc R Soc London A. 2004;460:3037–58. https://doi.org/10.1098/rspa.2004.1315.

    Article  Google Scholar 

  8. Portaro R, Ng HD. Experiments and modeling of air-powered needle-free liquid injectors. J Med Biol Eng. 2015;35:685–95. https://doi.org/10.1007/s40846-015-0075-y.

    Article  Google Scholar 

  9. Nakayama H, Portaro R, Kiyanda CB, Ng HD. CFD modeling of high speed liquid jets from an air-powered needle-free injection system. J Mech Med Biol. 2016;16:1650045. https://doi.org/10.1142/S0219519416500457.

    Article  Google Scholar 

  10. Park G, Modak A, Hogan NC, Hunter IW. The effect of jet shape on jet injection. 37th Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7350–3. https://doi.org/10.1109/EMBC.2015.7320089

  11. Zeng D, Wu N, Xie L, Xia X, Kang Y. An experimental study of a spring-loaded needle-free injector: influence of the ejection volume and injector orifice diameter. J Mech Sci Technol. 2019;33:5581–8. https://doi.org/10.1007/s12206-019-1051-1.

    Article  Google Scholar 

  12. Repici A, Maselli R, Carrara S, Anderloni A, Enderle M, Hassan C. Standard needle versus needleless injection modality: animal study on different fluids for submucosal elevation. Gastrointest Endosc. 2017;86:553–8. https://doi.org/10.1016/j.gie.2017.01.029.

    Article  PubMed  Google Scholar 

  13. Chen K, Zhou H, Li J, Cheng GJ. A model on liquid penetration into soft material with application to needle-free jet injection. J Biomech Eng. 2010;132: 101005. https://doi.org/10.1115/1.4002487.

    Article  PubMed  Google Scholar 

  14. Baxter J, Mitragotri S. Jet-induced skin puncture and its impact on needle-free jet injections: experimental studies and a predictive model. J Control Release. 2005;106:361–73. https://doi.org/10.1016/j.jconrel.2005.05.023.

    Article  CAS  PubMed  Google Scholar 

  15. Michinaka Y, Mitragotri S. Delivery of polymeric particles into skin using needle-free liquid jet injectors. J Control Release. 2011;153:249–54. https://doi.org/10.1016/j.jconrel.2011.03.024.

    Article  CAS  PubMed  Google Scholar 

  16. Schramm−Baxter J, Katrencik J, Mitragotri S. Jet injection into polyacrylamide gels: investigation of jet injection mechanics. J Biomech. 2004;37:1181–8. https://doi.org/10.1016/j.jbiomech.2003.12.006

  17. Rohilla P, Rane YS, Lawal I, Le Blanc A, Davis J, Thomas JB, et al. Characterization of jets for impulsively-started needle-free jet injectors: influence of fluid properties. J Drug Deliv Sci Technol. 2019;53: 101167. https://doi.org/10.1016/j.jddst.2019.101167.

    Article  CAS  Google Scholar 

  18. Rohilla P, Marston JO. In-vitro studies of jet injections. Int J Pharm. 2019;568: 118503. https://doi.org/10.1016/j.ijpharm.2019.118503.

    Article  CAS  PubMed  Google Scholar 

  19. Mohizin A, Kim JK. Effect of geometrical parameters on the fluid dynamics of air-powered needle-free jet injectors. Comput Biol Med. 2020;118: 103642. https://doi.org/10.1016/j.compbiomed.2020.103642.

    Article  CAS  PubMed  Google Scholar 

  20. Kendall MAF. The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system. Shock Waves. 2002;12:23–30. https://doi.org/10.1007/s001930200126.

    Article  Google Scholar 

  21. Mohizin A, Roy KER, Lee D, Lee SK, Kim JK. Computational fluid dynamics of impinging microjet for a needle-free skin scar treatment system. Comput Biol Med. 2018;101:61–9. https://doi.org/10.1016/j.compbiomed.2018.08.005.

    Article  PubMed  Google Scholar 

  22. Schoubben A, Cavicchi A, Barberini L, Faraon A, Berti M, Ricci M, et al. Dynamic behavior of a spring-powered micronozzle needle-free injector. Int J Pharm. 2015;491:91–8. https://doi.org/10.1016/j.ijpharm.2015.05.067.

    Article  CAS  PubMed  Google Scholar 

  23. Zeng D, Kang Y, Xie L, Xia X, Wang Z, Liu W. A mathematical model and experimental verification of optimal nozzle diameter in needle-free injection. J Pharm Sci. 2018;107:1086–94. https://doi.org/10.1016/j.xphs.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  24. Schramm J, Mitragotri S. Transdermal drug delivery by jet injectors: energetics of jet formation and penetration. Pharm Res. 2002;19:1673–9. https://doi.org/10.1023/A:1020753329492.

    Article  CAS  PubMed  Google Scholar 

  25. Schramm-Baxter J, Mitragotri S. Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. J Control Release. 2004;97:527–35. https://doi.org/10.1016/j.jconrel.2004.04.006.

    Article  CAS  PubMed  Google Scholar 

  26. Stachowiak JC, von Muhlen MG, Li TH, Jalilian L, Parekh SH, Fletcher DA. Piezoelectric control of needle-free transdermal drug delivery. J Control Release. 2007;124:88–97. https://doi.org/10.1016/j.jconrel.2007.08.017.

    Article  CAS  PubMed  Google Scholar 

  27. Taberner A, Hogan NC, Hunter IW. Needle-free jet injection using real-time controlled linear Lorentz-force actuators. Med Eng Phys. 2012;34:1228–35. https://doi.org/10.1016/j.medengphy.2011.12.010.

    Article  PubMed  Google Scholar 

  28. Seok J, Oh CT, Kwon HJ, Kwon TR, Choi EJ, Choi SY, et al. Investigating skin penetration depth and shape following needle-free injection at different pressures: a cadaveric study. Lasers Surg Med. 2016;48:624–8. https://doi.org/10.1002/lsm.22517.

    Article  PubMed  Google Scholar 

  29. Baxter J, Mitragotri S. Needle-free liquid jet injections: mechanisms and applications. Expert Rev Med Devices. 2006;3:565–74. https://doi.org/10.1586/17434440.3.5.565.

    Article  PubMed  Google Scholar 

  30. Mohizin A, Lee D, Kim JK. Impact of the mechanical properties of penetrated media on the injection characteristics of needle-free jet injection. Exp Therm Fluid Sci. 2021;126: 110396. https://doi.org/10.1016/j.expthermflusci.2021.110396.

    Article  CAS  Google Scholar 

  31. Mercuri M, Fernandez RD. Challenges and opportunities for small volumes delivery into the skin. Biomicrofluidics. 2021;15: 011301. https://doi.org/10.1063/5.0030163.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jang H, Hur E, Kim Y, Lee S-H, Kang NG, Yoh JJ. Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery. J Biomed Opt. 2014;19: 118002. https://doi.org/10.1117/1.JBO.19.11.118002.

    Article  CAS  PubMed  Google Scholar 

  33. Kwon TR, Seok J, Jang JH, Kwon MK, Oh CT, Choi EJ, et al. Needle-free jet injection of hyaluronic acid improves skin remodeling in a mouse model. Eur J Pharm Biopharm. 2016;105:69–74. https://doi.org/10.1016/j.ejpb.2016.05.014.

    Article  CAS  PubMed  Google Scholar 

  34. Portaro R. Air-powered liquid needle free injectors: design modeling and experimental validation (MS Thesis). Montreal: Concordia University; 2013.

    Google Scholar 

  35. Simmons JA, Davis J, Thomas J, Lopez J, Le Blanc A, Allison H, et al. Characterization of skin blebs from intradermal jet injection: ex-vivo studies. J Control Release. 2019;307:200–10. https://doi.org/10.1016/j.jconrel.2019.06.032.

    Article  CAS  PubMed  Google Scholar 

  36. Marston JO, Lacerda CMR. Characterization of jet injection efficiency with mouse cadavers. J Control Release. 2019;305:101–9. https://doi.org/10.1016/j.jconrel.2019.05.023.

    Article  CAS  PubMed  Google Scholar 

  37. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72. https://doi.org/10.1111/j.1600-0625.2008.00786.x.

    Article  PubMed  Google Scholar 

  38. McKeage JW, Ruddy BP, Nielsen PMF, Taberner AJ. The effect of jet speed on large volume jet injection. J Control Release. 2018;280:51–7. https://doi.org/10.1016/j.jconrel.2018.04.054.

    Article  CAS  PubMed  Google Scholar 

  39. Wendell DM, Hemond BD, Hogan NC, Taberner AJ, Hunter IW. The effect of jet parameters on jet injection. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; 2006. p. 5005–8. IEEE. https://doi.org/10.1109/IEMBS.2006.260369

  40. Bik L, van Doorn MBA, Biskup E, Ortner VK, Haedersdal M, Olesen UH. Electronic pneumatic injection-assisted dermal drug delivery visualized by ex vivo confocal microscopy. Lasers Surg Med. 2020;53:141–7. https://doi.org/10.1002/lsm.23279.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Paggi M, Reinoso J. Revisiting the problem of a crack impinging on an interface: a modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model. Comput Methods Appl Mech Eng. 2017;321:145–72. https://doi.org/10.1016/j.cma.2017.04.004.

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Research Foundation (NRF) (NRF-2019R1A2C2088973) funded by the Ministry of Science & ICT and the Korea Evaluation Institute of Industrial Technology (KEIT) (20011377) funded by the Ministry of Trade, Industry & Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. Mohizin and J. K. Kim; idea: A. Mohizin and J. K. Kim; funding acquisition: J. K. Kim; project administration: J. K. Kim; experiments and data analysis: A. Mohizin; writing − original draft preparation: A. Mohizin; writing − review and editing: A. Mohizin and J. K. Kim.

Corresponding author

Correspondence to Jung Kyung Kim.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agree to the submission of this original article to the journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohizin, A., Kim, J. Dispersion profile of a needle-free jet injection depends on the interfacial property of the medium. Drug Deliv. and Transl. Res. 12, 384–394 (2022). https://doi.org/10.1007/s13346-021-01049-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01049-7

Keywords

Navigation