Skip to main content

Advertisement

Log in

Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Nanocarriers play pivotal roles in the field of biomedical applications, particularly in anticancer therapy. One of the prominent strategies for the transport of anticancer drugs with site-specific release and improved therapeutic efficacy is the use of an enzyme-responsive drug delivery system. There is an emerging class of cancer therapeutics engineered to control the release of a drug via enzymatic degradation. Enzymes, being an essential component of bio-nanotechnology toolbox, hold exceptional biorecognition abilities as well as outstanding catalytic properties. Often, abnormal enzyme expression observed in cancer offers many opportunities in designing nanocarriers modified with enzyme-labile linkage. Through altered physical or chemical characteristics of these nanocarriers or cleavage of the drug in response to the bio-action of enzyme, an on-demand drug release can be obtained. In this review, several classes of enzymes performing critical roles in cancer such as hydrolases, lipases, and oxidoreductases are summarized. Insights on various approaches that interfere with the mechanism of these enzymes have also been included. Finally, various smart nanocarriers such as mesoporous silica nanoparticles, gold nanoparticles, carbon-nanotubes, micelles, liposomes, and dendrimers serving as excellent platforms for enzyme-responsive formulations have been discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Kunde SS, Wairkar S. Platelet membrane camouflaged nanoparticles: biomimetic architecture for targeted therapy. Int J Pharm. 2021;598: 120395. https://doi.org/10.1016/j.ijpharm.2021.120395.

    Article  CAS  PubMed  Google Scholar 

  3. Patel D, Wairkar S, Yergeri MY. Current developments in targeted drug delivery systems for glioma. Curr Pharm Des. 2020;26(32):3973–84. https://doi.org/10.2174/1381612826666200424161929.

    Article  CAS  PubMed  Google Scholar 

  4. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale. The Royal Society of Chemistry; 2014;6:12273–86.

  6. Ulijn R V. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem. The Royal Society of Chemistry;  2006;16:2217.

  7. Cheng W, Gu L, Ren W, Liu Y. Stimuli-responsive polymers for anti-cancer drug delivery. Mater Sci Eng C. 2014;45:600–8.

    Article  CAS  Google Scholar 

  8. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012;3125–30.

  9. Mohla S. Tumor microenvironment. J Cell Biochem. John Wiley & Sons, Ltd; 2007;101:801–4.

  10. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25:30–8.

    Article  CAS  PubMed  Google Scholar 

  11. Finger EC, Giaccia AJ. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev. 2010;29:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422–33.

    Article  CAS  PubMed  Google Scholar 

  13. Mbeunkui F, Johann DJ. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother. Pharmacol. NIH Public Access; 2009. p. 571–82.

  14. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27:5904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;392–401.

  16. Weber CE, Kuo PC. The tumor microenvironment. Surg Oncol. 2012;21:172–7.

    Article  PubMed  Google Scholar 

  17. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63:136–51.

    Article  CAS  PubMed  Google Scholar 

  18. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag Dove Press. 2006;2:213–9.

    Article  CAS  Google Scholar 

  19. Maeda H. Polymer therapeutics and the EPR effect. J Drug Target Taylor & Francis. 2017;25:781–5.

    Article  CAS  Google Scholar 

  20. Greish K. Enhanced Permeability and Retention (EPR) Effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010. p. 25–37.

  21. Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol. Cancer Res. 2006. p. 61–70.

  22. Sreedhar A, Zhao Y. Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells. Biomed Reports. 2018;8:3–10.

    CAS  Google Scholar 

  23. Lopes-Ramos CM, Quackenbush J, DeMeo DL. Genome-wide sex and gender differences in cancer. Front Oncol. 2020;10:1–17.

    Article  Google Scholar 

  24. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ Nature Publishing Group. 2015;22:526–39.

    Article  CAS  Google Scholar 

  25. Olsson M, Zhivotovsky B. Caspases and cancer. Cell death differ Nature Publishing Group. 2011;18:1441–9.

    Article  CAS  Google Scholar 

  26. Joyce JA, Hanahan D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle Taylor & Francis. 2004;3:1516–9.

    Article  CAS  Google Scholar 

  27. Tan G-J, Peng Z-K, Lu J-P, Tang F-Q. Cathepsins mediate tumor metastasis. World J Biol Chem. Baishideng Publishing Group Inc; 2013;4:91–101.

  28. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.

    Article  CAS  PubMed  Google Scholar 

  29. Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis Elsevier. 2015;2:26–34.

    Article  Google Scholar 

  30. Park JB, Lee CS, Jang J-H, Ghim J, Kim Y-J, You S, et al. Phospholipase signalling networks in cancer. Nat Rev Cancer. 2012;12:782–92.

    Article  CAS  PubMed  Google Scholar 

  31. Scott KF, Sajinovic M, Hein J, Nixdorf S, Galettis P, Liauw W, et al. Emerging roles for phospholipase A2 enzymes in cancer. Biochimie. 2010;92:601–10.

    Article  CAS  PubMed  Google Scholar 

  32. Hatfield JM, Wierdl M, Wadkins RM, Potter PM. Modifications of human carboxylesterase for improved prodrug activation. Expert Opin Drug Metab Toxicol. NIH Public Access. 2008;4:1153–65.

  33. Wang D, Zou L, Jin Q, Hou J, Ge G, Yang L. Human carboxylesterases: a comprehensive review. Acta Pharm Sin B Elsevier. 2018;8:699–712.

    Article  Google Scholar 

  34. Rubin DM, Rubin EJ. A minimal toxicity approach to cancer therapy: possible role of beta-glucuronidase. Med Hypotheses Churchill Livingstone. 1980;6:85–92.

    Article  CAS  Google Scholar 

  35. Tranoy-Opalinski I, Legigan T, Barat R, Clarhaut J, Thomas M, Renoux B, et al. β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: An update. Eur J Med Chem Elsevier Masson. 2014;74:302–13.

    Article  CAS  Google Scholar 

  36. McAtee CO, Barycki JJ, Simpson MA. Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv Cancer Res NIH Public Access. 2014;123:1–34.

    Article  Google Scholar 

  37. Ryan A. Azoreductases in drug metabolism. Br J Pharmacol Wiley-Blackwell. 2017;174:2161–73.

    Article  CAS  Google Scholar 

  38. Rowland RHIR. Metabolic activities of the gut microflora in relation to cancer. Microb Ecol Health Dis. Taylor & Francis; 2000;12:179–85.

  39. Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H: quinone oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer. J Med Chem Am Chem Soc. 2018;61:6983–7003.

    CAS  Google Scholar 

  40. Hanauske A-, Sundell K, Lahn M. The Role of Protein Kinase C-alpha (PKC-α) in Cancer and its Modulation by the Novel PKC-α-Specific Inhibitor Aprinocarsen. Curr Pharm Des. 2004;10:1923–36.

  41. Dudani JS, Warren AD, Bhatia SN, Bhatia S. Harnessing protease activity to improve cancer care. Annu Rev Cancer Biol. 2018;2:353–76.

    Article  Google Scholar 

  42. Yang Y, Hong H, Zhang Y, Cai W. Molecular imaging of proteases in cancer. Cancer Growth Metastasis NIH Public Access. 2009;2:13–27.

    CAS  Google Scholar 

  43. Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH, et al. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev Springer. 2003;22:237–58.

    Article  CAS  Google Scholar 

  44. López-Otín C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7:800–8.

    Article  CAS  PubMed  Google Scholar 

  45. Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, et al. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother. 2017;86:221–31.

    Article  CAS  PubMed  Google Scholar 

  46. Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. 2014;190:352–70.

    Article  CAS  PubMed  Google Scholar 

  47. Yamada R, Kostova MB, Anchoori RK, Xu S, Neamati N, Khan S. Biological evaluation of paclitaxel-peptide conjugates as a model for MMP2-targeted drug delivery. Cancer Biol Ther. 2010;9:192–203.

    Article  CAS  PubMed  Google Scholar 

  48. Li X, Kim J, Yoon J, Chen X. Cancer-associated, stimuli-driven, turn on theranostics for multimodality imaging and therapy. Adv Mater. 2017;29:1606857.

    Article  CAS  Google Scholar 

  49. Kuang T, Liu Y, Gong T, Peng X, Hu X, Yu Z. Enzyme-responsive nanoparticles for anticancer drug delivery. Curr Nanosci. 2015;12:38–46.

    Article  CAS  Google Scholar 

  50. Cummings BS. Phospholipase A2 as targets for anti-cancer drugs. Biochem Pharmacol. 2007;74:949–59.

    Article  CAS  PubMed  Google Scholar 

  51. Brás NF, Cerqueira NMFSA, Ramos MJ, Fernandes PA. Glycosidase inhibitors: a patent review (2008–2013). Expert Opin Ther Pat. Informa Healthcare; 2014;24:857–74.

  52. Gerber-Lemaire S, Juillerat-Jeanneret L. Glycosylation pathways as drug targets for cancer: glycosidase inhibitors. Mini-Rev Med Chem. 2006;6:1043–52.

    Article  CAS  PubMed  Google Scholar 

  53. Sellés Vidal L, Kelly CL, Mordaka PM, Heap JT. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim Biophys Acta - Proteins Proteomics. 2018;1866:327–47.

    Article  CAS  PubMed  Google Scholar 

  54. Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys. 2010;501:116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Medina SH, Chevliakov MV, Tiruchinapally G, Durmaz YY, Kuruvilla SP, ElSayed MEH. Enzyme-activated nanoconjugates for tunable release of doxorubicin in hepatic cancer cells. Biomaterials. 2013;34:4655–66.

    Article  CAS  PubMed  Google Scholar 

  56. Mu J, Lin J, Huang P, Chen X. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem Soc Rev. The Royal Society of Chemistry; 2018;47:5554–73.

  57. Andresen TL, Thompson DH, Kaasgaard T. Enzyme-triggered nanomedicine: drug release strategies in cancer therapy (Invited Review). Mol Membr Biol. 2010;27:353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release. 2015;219:205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev. 2012;64:866–84.

    Article  CAS  PubMed  Google Scholar 

  60. Gu M, Wang X, Toh TB, Chow EK-H. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today. 2018;23:1043–52.

  61. Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine Dove Press. 2017;12:7291–309.

    Article  Google Scholar 

  63. Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release. 2006;111:333–42.

    Article  CAS  PubMed  Google Scholar 

  64. Andresen TL, Davidsen J, Begtrup M, Mouritsen OG, Jørgensen K. Enzymatic release of antitumor ether lipids by specific phospholipase A 2 activation of liposome-forming prodrugs. J Med Chem. 2004;47:1694–703.

    Article  CAS  PubMed  Google Scholar 

  65. Linderoth L, Peters GH, Madsen R, Andresen TL. Drug delivery by an enzyme-mediated cyclization of a lipid prodrug with unique bilayer-formation properties. Angew Chemie Int Ed. John Wiley & Sons, Ltd; 2009;48:1823–6.

  66. Lin C, Wong BCK, Chen H, Bian Z, Zhang G, Zhang X, et al. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep. Nature Publishing Group; 2017;7:1097.

  67. Wong BCK, Zhang H, Qin L, Chen H, Fang C, Lu A, et al. Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro. Drug Des Devel Ther. Dove Medical Press Ltd; 2014;8:993–1001.

  68. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.

    Article  CAS  PubMed  Google Scholar 

  69. Sun I-C, Lee S, Koo H, Kwon IC, Choi K, Ahn C-H, et al. Caspase sensitive gold nanoparticle for apoptosis imaging in live cells. Bioconjug Chem. 2010;21:1939–42.

    Article  CAS  PubMed  Google Scholar 

  70. Lee K, Lee H, Bae KH, Park TG. Heparin immobilized gold nanoparticles for targeted detection and apoptotic death of metastatic cancer cells. Biomaterials. 2010;31:6530–6.

    Article  CAS  PubMed  Google Scholar 

  71. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24:1029–46.

    Article  CAS  PubMed  Google Scholar 

  72. Zhu L, Wang T, Perche F, Taigind A, Torchilin VP. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci. 2013;110:17047–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yao Q, Liu Y, Kou L, Tu Y, Tang X, Zhu L. Tumor-targeted drug delivery and sensitization by MMP2-responsive polymeric micelles. Nanomedicine. 2019;19:71–80.

    Article  CAS  PubMed  Google Scholar 

  74. Barve A, Jain A, Liu H, Zhao Z, Cheng K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater. 2020;113:501–11. Available from: https://doi.org/10.1016/j.actbio.2020.06.019

  75. Sultana S, Khan MR, Kumar M, Kumar S, Ali M. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target. 2013;21:107–25.

    Article  CAS  PubMed  Google Scholar 

  76. Li N, Li N, Yi Q, Luo K, Guo C, Pan D, et al. Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials. 2014;35:9529–45.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang C, Pan D, Li J, Hu J, Bains A, Guys N, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater. 2017;55:153–62.

    Article  CAS  PubMed  Google Scholar 

  78. Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S. Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr Med Chem. 2013;20:1333–54.

    Article  CAS  PubMed  Google Scholar 

  79. Fabbro C, Ali-Boucetta H, Ros T Da, Kostarelos K, Bianco A, Prato M. Targeting carbon nanotubes against cancer. Chem Commun. The Royal Society of Chemistry; 2012;48:3911.

  80. Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C, et al. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem Commun (Camb). 2010;46:1494–6.

    Article  Google Scholar 

  81. Zolot RS, Basu S, Million RP. Antibody-drug conjugates. Nat Rev Drug Discov. 2013;12:259–60. Available from: https://doi.org/10.1038/nrd3980

  82. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37. Available from: https://doi.org/10.1038/nrd.2016.268

  83. Chudasama V, Maruani A, Caddick S. Recent advances in the construction of antibody-drug conjugates. Nat Chem. 2016;8:114–9.

    Article  CAS  PubMed  Google Scholar 

  84. Chau CH, Steeg PS, Figg WD. Antibody–drug conjugates for cancer. Lancet 2019;394:793–804. Available from: https://doi.org/10.1016/S0140-6736(19)31774-X

  85. Kern JC, Dooney D, Zhang R, Liang L, Brandish PE, Cheng M, et al. Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem. 2016;27:2081–8.

    Article  CAS  PubMed  Google Scholar 

  86. Kolodych S, Michel C, Delacroix S, Koniev O, Ehkirch A, Eberova J, et al. Development and evaluation of β-galactosidase-sensitive antibody-drug conjugates. Eur J Med Chem. Elsevier Masson SAS; 2017;142:376–82. Available from: https://doi.org/10.1016/j.ejmech.2017.08.008

  87. He H, Liu L, Morin EE, Liu M, Schwendeman A. Survey of clinical translation of cancer nanomedicines - lessons learned from successes and failures. Acc Chem Res. 2019;52:2673–83.

    Article  CAS  Google Scholar 

  88. EMA. Withdrawal assessment report for Opaxio® (Paclitaxel poliglumex). 2009;1–39.

  89. Agarwal A, Ressler D, Snyder G. The current and future state of companion diagnostics. Pharmgenomics Pers Med. 2015;8:99–110.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The concept was and designed by SW. HK performed the literature survey and collection. HK and YM drafted the manuscript. VT revised the manuscript. SW reviewed and edited the manuscript and then gave final approval of the version to be published.

Corresponding author

Correspondence to Sarika Wairkar.

Ethics declarations

Consent for publication

The manuscript has been read and approved by all the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapalatiya, H., Madav, Y., Tambe, V. et al. Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview. Drug Deliv. and Transl. Res. 12, 1293–1305 (2022). https://doi.org/10.1007/s13346-021-01020-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01020-6

Keywords

Navigation