Skip to main content

Advertisement

Log in

Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small cell lung cancer

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Nanoparticle-aided combination chemotherapy offers several advantages like ratiometric drug delivery, dose reduction, multi-targeted therapy, synergism, and overcoming multi-drug resistance. The current research was instigated to facilitate targeted and ratiometric co-delivery of docetaxel (DT) and curcumin (CR) through the development of folate (FA)–appended nanostructured lipid carriers (NLCs), i.e., FA-DTCR-NLCs to lung cancer cells. The FA-DTCR-NLCs were formulated by employing a scaleable and solvent-free high-pressure homogenization approach. The FA-DTCR-NLCs were evaluated for in vitro and in vivo characteristics using suitable analytical and statistical techniques. The FA-DTCR-NLCs demonstrated physicochemical properties and particokinetics suitable for targeted, ratiometric co-delivery of the anticancer agents. This was further affirmed by significantly better in vivo relative bioavailability of DT (24.85 fold) with FA-DTCR-NLCs as compared with Taxotere® (p < 0.05) and cell line studies. A significant tumor regression was observed from the results of tumor staging in a murine model of lung carcinoma (p < 0.05). Immunostaining of the tumor sections with tumor differentiation biomarkers suggested considerably higher apoptotic, anti-proliferative, anti-angiogenic, and anti-metastatic potential of FA-DTCR-NLCs compared with Taxotere®. In vivo toxicity assessment of the FA-DTCR-NLCs demonstrated a noteworthy reduction in DT associated side effects. The in vitro and in vivo pre-clinical findings prove the therapeutic and safety pre-eminence of FA-DTCR-NLCs for the treatment of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018; 68(6): 394–424.

  2. International Agency for Research on Cancer. Global cancer observatory. World Health Organization. https://gco.iarc. fr. Accessed. 2018; 8.

  3. Gligorov J, Lotz JP. Preclinical pharmacology of the taxanes: implications of the differences. Oncologist. 2004;9(Supplement 2):3–8.

    Article  CAS  PubMed  Google Scholar 

  4. Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release. 2019;301:76–109.

    Article  CAS  PubMed  Google Scholar 

  5. Budman DR, Calabro A. In vitro search for synergy and antagonism: evaluation of docetaxel combinations in breast cancer cell lines. Breast Cancer Res Treat. 2002;74(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  6. Pawar H, Surapaneni SK, Tikoo K, Singh C, Burman R, Gill MS, Suresh S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: in vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Delivery. 2016;23(4):1453–68.

    Article  CAS  PubMed  Google Scholar 

  7. Yan J, Wang Y, Jia Y, Liu S, Tian C, Pan W, et al. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed Pharmacother. 2017;88:374–83.

    Article  CAS  PubMed  Google Scholar 

  8. Pawar H, Wankhade SR, Yadav DK, Suresh S. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration. Pharm Dev Technol. 2016;21(6):725–36.

    Article  CAS  PubMed  Google Scholar 

  9. Le TTD, La TH, Le TMP, Pham VP, Nguyen TMH, Le QH. Docetaxel and curcumin-containing poly(ethylene glycol)-block-poly(s-caprolactone) polymer micelles. Adv Nat Sci Nanosci Nanotechnol. 2013;4(2).

  10. Sahu BP, Hazarika H, Bharadwaj R, Loying P, Baishya R, Dash S, et al. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin Drug Deliv. 2016;13(8):1065–74.

    Article  CAS  PubMed  Google Scholar 

  11. Yan J, Wang Y, Zhang X, Liu S, Tian C, Wang H. largeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid–polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv. 2016;23(5):1757–62.

    Article  CAS  PubMed  Google Scholar 

  12. Hu L, Pang S, Hu Q, Gu D, Kong D, Xiong X, et al. Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin. Biomed Pharmacother [Internet]. 2015;75:26–32. Available from:https://doi.org/10.1016/j.biopha.2015.08.036

  13. Mayer LD, Harasym TO, Tardi PG, Harasym NL, Shew CR, Johnstone SA, et al. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol Cancer Ther. 2006;5(7):1854–63.

    Article  CAS  PubMed  Google Scholar 

  14. Mendes LP, Sarisozen C, Luther E, Pan J, Torchilin VP, Mendes LP, et al. Liposomes as novel carrier of siRNA and chemotherapeutics for combination treatment of drug-resistant cancers. Drug Deliv. 2019;26(1):443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cosco D, Paolino D, Cilurzo F, Casale F, Fresta M. Gemcitabine and tamoxifen-loaded liposomes as multidrug carriers for the treatment of breast cancer diseases. Int J Pharm. 2012;422(1–2):229–37.

    Article  CAS  PubMed  Google Scholar 

  16. Cosco D, Paolino D, Maiuolo J, Russo D, Fresta M. Liposomes as multicompartmental carriers for multidrug delivery in anticancer chemotherapy. 2011;66–75.

  17. Lei M, Ma G, Sha S, Wang X, Feng H, Zhu Y, et al. Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance. Drug Deliv. 2019;26(1):262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rawal S, Patel BM, Patel MM., Formulation, optimization and in vitro evaluation of docetaxel and curcumin co-loaded nanostructured lipid carriers for improved antitumor activity against non-small cell lung carcinoma, Journal of Microencapsulation. Under comm (2019).

  19. Mathur P, Sharma S, Rawal S, Patel B, Patel MM. Fabrication, optimization and in vitro evaluation of docetaxel loaded nanostructured lipid carriers for improved anticancer activity. Journal of liposome research. 2019:1–48.

  20. Lee DJ, Kessel E, Lehto T, Liu X, Yoshinaga N, Padari K, Chen YC, Kempter S, Uchida S, Rädler JO, Pooga M. Systemic delivery of folate-PEG siRNA lipopolyplexes with enhanced intracellular stability for in vivo gene silencing in leukemia. Bioconjug Chem. 2017;28(9):2393–409.

    Article  CAS  PubMed  Google Scholar 

  21. Tan Q, Liu X, Fu X, Li Q, Dou J, Zhai G. Current development in nanoformulations of docetaxel. Expert opinion on drug delivery. 2012;9(8):975–90.

    Article  CAS  PubMed  Google Scholar 

  22. Rawal SU, Patel MM. Lipid nanoparticulate systems: modern versatile drug carriers. In Lipid Nanocarriers for Drug Targeting. Grumezescu, A, Eds.: William Andrew Publishing. Elseveir, 2018: 49–138.s

  23. Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci. 2000;89(11):1452–64.

    Article  CAS  PubMed  Google Scholar 

  24. Sinhmar GK, Shah NN, Chokshi NV, Khatri HN, Patel MM. Process, optimization, and characterization of budesonide-loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease. Drug Dev Ind Pharm. 2018;44(7):1078–89.

    Article  CAS  PubMed  Google Scholar 

  25. Chokshi NV, Khatri HN, Patel MM. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev Ind Pharm. 2018;44(12):1975–89.

    Article  CAS  PubMed  Google Scholar 

  26. Chokshi NV, Khatri HN, Patel MM. Fabrication and optimization of isoniazid loaded lipid nanoparticulate systems for the treatment of tuberculosis. Advanced Science, Engineering and Medicine. 2019;11(8):741–57.

    Article  CAS  Google Scholar 

  27. Khatri H, Chokshi N, Rawal S, Patel MM. Fabrication, characterization and optimization of artemether loaded PEGylated solid lipid nanoparticles for the treatment of lung cancer. Materials Research Express. 2018; 6 (4).

  28. Forkert PG. Mechanisms of lung tumorigenesis by ethyl carbamate and vinyl carbamate. Drug Metab Rev. 2010;42(2):355–78.

    Article  CAS  PubMed  Google Scholar 

  29. Grigoraş ML, Arghirescu TS, Folescu R, Talpoş IC, Gindac CM, Zamfir CL, Cornianu MĂ, Anghel MD, Levai CM. Expression of E-cadherin in lung carcinoma, other than those with small cells (NSCLC). Romanian journal of morphology and embryology= Revue roumaine de morphologieetembryologie. 2017; 58(4): 1317–25.

  30. Guntur VP, Waldrep JC, Guo JJ, Selting K, Dhand R. Increasing p53 protein sensitizes non-small cell lung cancer to paclitaxel and cisplatin in vitro. Anticancer Res. 2010;30(9):3557–64.

    CAS  PubMed  Google Scholar 

  31. Warth A, Cortis J, Soltermann A, Meister M, Budczies J, Stenzinger A, Goeppert B, Thomas M, Herth FJ, Schirmacher P, Schnabel PA. Tumour cell proliferation (Ki-67) in non-small cell lung cancer: a critical reappraisal of its prognostic role. Br J Cancer. 2014;111(6):1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang YL, Chen MW, Xian L. Prognostic and clinicopathological significance of downregulated E-cadherin expression in patients with non-small cell lung cancer (NSCLC): a meta-analysis. PLoS ONE. 2014;9(6):e99763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, Yamada T, Hanaoka N, Inui K, Wada H. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res. 2001;7(11):3410–5.

    CAS  PubMed  Google Scholar 

  34. Bing Z, Jian-ru Y, Yao-quan J, Shi-feng C. Evaluation of angiogenesis in non-small cell lung carcinoma by CD34 immunohistochemistry. Cell Biochem Biophys. 2014;70(1):327–31.

    Article  PubMed  CAS  Google Scholar 

  35. Cheng YL, Lee SC, Harn HJ, Chen CJ, Chen CJ, Chen JC, Yu CP. Prognostic prediction of the immunohistochemical expression of p53 and p16 in resected non-small cell lung cancer. Eur J Cardiothorac Surg. 2003;23(2):221–8.

    Article  PubMed  Google Scholar 

  36. Sinhmar GK, Shah NN, Rawal SU, Chokshi NV, Khatri HN, Patel BM, Patel MM. Surface engineered lipid nanoparticle-mediated site-specific drug delivery system for the treatment of inflammatory bowel disease. Artificial cells, nanomedicine, and biotechnology. 2018;46(sup2):565–78.

    Article  CAS  PubMed  Google Scholar 

  37. Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95(3):627–38.

    Article  CAS  PubMed  Google Scholar 

  38. Larson TA, Joshi PP, Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6(10):9182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ali S, Kolter K. Kolliphor® HS 15 - an enabler for parenteral and oral formulations. Am Pharm Rev. 2019;22(1):1–19.

    Google Scholar 

  40. Sun X, Li J, Guo C, Xing H, Xu J, Wen Y, Qiu Z, Zhang Q, Zheng Y, Chen X, Zhao D. Pharmacokinetic effects of curcumin on docetaxel mediated by OATP1B1, OATP1B3 and CYP450s. Drug Metab Pharmacokinet. 2016;31(4):269–75.

    Article  CAS  PubMed  Google Scholar 

  41. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Science translational medicine. 2014; 6(221): 221ra15.

  42. Yin H, Guo R, Xu Y, Zheng Y, Hou Z, Dai X, Zhang Z, Zheng D, Xu HE. Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer. Acta BiochimBiophys Sin. 2011;44(2):147–53.

    Article  CAS  Google Scholar 

  43. Tandon S, Tudur-Smith C, Riley RD, Boyd MT, Jones TM. A systematic review of p53 as a prognostic factor of survival in squamous cell carcinoma of the four main anatomical subsites of the head and neck. Cancer Epidemiology and Prevention Biomarkers. 2010;19(2):574–87.

    Article  CAS  Google Scholar 

  44. Banerjee S, Singh SK, Chowdhury I, LillardJr JW, Singh R. Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer. Frontiers in bioscience (Elite edition). 2017;9:235.

    Google Scholar 

  45. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA. Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Can Res. 2000;60(21):6052–60.

    CAS  Google Scholar 

  46. Magadoux L, Isambert N, Plenchette S, Jeannin JF, Laurens V. Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer. Int J Oncol. 2014;45(3):919–28.

    Article  CAS  PubMed  Google Scholar 

  47. Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, Price JE. Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res. 2005;11(20):7490–8.

    Article  CAS  PubMed  Google Scholar 

  48. Xu Y, Zhang J, Han J, Pan X, Cao Y, Guo H, Pan Y, An Y, Li X. Curcumin inhibits tumor proliferation induced by neutrophil elastase through the upregulation of α1-antitrypsin in lung cancer. Molecular oncology. 2012;6(4):405–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chirieac LR. Ki-67 expression in pulmonary tumors. Translational lung cancer research. 2016;5(5):547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He X, Li C, Wu X, Yang G. Docetaxel inhibits the proliferation of non-small-cell lung cancer cells via upregulation of microRNA-7 expression. International journal of clinical and experimental pathology. 2015;8(8):9072.

    PubMed  PubMed Central  Google Scholar 

  51. Shaikh SB, Prabhu A, Bhandary YP. Curcumin suppresses epithelial growth factor receptor (EGFR) and proliferative protein (Ki 67) in acute lung injury and lung fibrosis in vitro and in vivo. Endocrine, metabolic & immune disorders drug targets. 2019.

  52. Heinke T, Santo E, LongattoFilho A, Stavale JN. Vascular endothelial growth factor and KIT expression in relation with microvascular density and tumor grade in supratentorialastrocytic tumors. Actacirurgicabrasileira. 2013;28(1):48–54.

    Google Scholar 

  53. Sweeney CJ, Miller KD, Sissons SE, Nozaki S, Heilman DK, Shen J, Sledge GW. The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Can Res. 2001;61(8):3369–72.

    CAS  Google Scholar 

  54. Vacca A, Ribatti D, Iurlaro M, Merchionne F, Nico B, Ria R, Dammacco F. Docetaxel versus paclitaxel for antiangiogenesis. Journal of hematotherapy&stem cell research. 2002;11(1):103–18.

    Article  CAS  Google Scholar 

  55. Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. AdvExp Med Biol. 2007;595:185–95.

    Article  Google Scholar 

  56. Eckert K, Fuhrmann-Selter T, Maurer HR. Docetaxel enhances the expression of E-cadherin and carcinoembryonic antigen (CEA) on human colon cancer cell lines in vitro. Anticancer Res. 1997;17(1A):7–12.

    CAS  PubMed  Google Scholar 

  57. Hurtubise A, Momparler RL. Evaluation of antineoplastic action of 5-aza-2′-deoxycytidine (Dacogen) and docetaxel (Taxotere) on human breast, lung and prostate carcinoma cell lines. Anticancer Drugs. 2004;15(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  58. Deng YI, Verron E, Rohanizadeh R. Molecular mechanisms of anti-metastatic activity of curcumin. Anticancer Res. 2016;36(11):5639–47.

    Article  CAS  PubMed  Google Scholar 

  59. Chen X, Wang J, Fu Z, Zhu B, Wang J, Guan S, Hua Z. Curcumin activates DNA repair pathway in bone marrow to improve carboplatin-induced myelosuppression. Scientific reports. 2017;7(1):17724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Goel A, Aggarwal BB. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer. 2010;62(7):919–30.

    Article  CAS  PubMed  Google Scholar 

  61. Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. Journal of traditional and complementary medicine. 2017;7(3):339–46.

    Article  PubMed  Google Scholar 

  62. Picard M, Castells MC. Re-visiting hypersensitivity reactions to taxanes: a comprehensive review. Clin Rev Allergy Immunol. 2015;49(2):177–91.

    Article  CAS  PubMed  Google Scholar 

  63. S. Aventis, Highlights of prescribing information for docetaxel injection , Taxotere, (1996).

  64. Kim J, Lee YJ, Kim YA, Cho ES, Huh E, Bang OS, Kim NS. Aqueous extract of Phragmitisrhizoma ameliorates myelotoxicity of docetaxel in vitro and in vivo. BMC complementary and alternative medicine. 2017;17(1):393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Liu Z, Huang P, Law S, Tian H, Leung W, Xu C. Preventive effect of curcumin against chemotherapy-induced side-effects. Frontiers in pharmacology. 2018: 9.

  66. Wang Z, Liang X, Yu J, Zheng X, Zhu Y, Yan Y, Dong N, Di L, Song G, Zhou X, Wang X. Non-genetic risk factors and predicting efficacy for docetaxel–drug-induced liver injury among metastatic breast cancer patients. J Gastroenterol Hepatol. 2012;27(8):1348–52.

    Article  CAS  PubMed  Google Scholar 

  67. Pieniążek A, Czepas J, Piasecka-Zelga J, Gwoździński K, Koceva-Chyła A. Oxidative stress induced in rat liver by anticancer drugs doxorubicin, paclitaxel and docetaxel. Advances in medical sciences. 2013;58(1):104–11.

    Article  PubMed  CAS  Google Scholar 

  68. Farkhondeh T, Samarghandian S. The hepatoprotective effects of curcumin against drugs and toxic agents: an updated review. Toxin reviews. 2016;35(3–4):133–40.

    Article  CAS  Google Scholar 

  69. Hashish EA, Elgaml SA. Hepatoprotective and nephroprotective effect of curcumin against copper toxicity in rats. Indian J Clin Biochem. 2016;31(3):270–7.

    Article  CAS  PubMed  Google Scholar 

  70. Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, Naseri R, Nabavi SM, Rahimi R, Abdollahi M. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients. 2018;10(7):855.

    Article  PubMed Central  CAS  Google Scholar 

  71. Takimoto T, Nakabori T, Osa A, Morita S, Terada H, Oseto S, Iwazawa T, Abe K. Tubular nephrotoxicity induced by docetaxel in non-small-cell lung cancer patients. International journal of clinical oncology. 2012;17(4):395–8.

    Article  CAS  PubMed  Google Scholar 

  72. Alkuraishy HM, Al-Gareeb AI, Rasheed HA. Nephroprotective effect of Curcumin (Curcuma Longa) in acute nephrotoxicity in Sprague-Dawley rats. In press. Journal of Contemporary Medical Sciences. 2019; 5(2):122–124.

Download references

Acknowledgments

The authors are thankful to the Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India, for providing the necessary facilities to generate the manuscript that is a part of a Doctor of Philosophy (Ph.D.) research work of Ms. Shruti U. Rawal to be submitted to Nirma University, Ahmedabad, India.

Funding

The authors were financially assisted by Nirma University, Ahmedabad, India, in form of Major Research Project (NU/Ph.D./Major Res Pro/IP/16-17/669) which also provided necessary facilities to carry out the research work. This study was funded by the Department of Science and Technology (DST) Fund for Improvement of S&T Infrastructure (FIST) (Grant No. SR/FST/LSI-607/2014), Government of India, for the establishment of equipment facility. Ms. Shruti Rawal was supported by Nirma University which provided the Junior Research Fellowship and Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayur Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawal, S., Bora, V., Patel, B. et al. Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small cell lung cancer. Drug Deliv. and Transl. Res. 11, 2030–2051 (2021). https://doi.org/10.1007/s13346-020-00866-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00866-6

Keywords

Navigation