Skip to main content

Advertisement

Log in

Enzymatically crosslinked tyramine-gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint synovial inflammation, as well as cartilage and bone tissue destruction. Current strategies for the treatment of RA can reduce joint inflammation, but the treatment options still represent stability concerns since they are not sufficient and present a fast clearing. Thus, several drug delivery systems (DDS) have been advanced to tackle this limitation. Injectable gellan gum (GG) hydrogels, reduced by physical crosslinking methods, also being proposed as DDS, but this kind of crosslinking can produce hydrogels that become weaker in physiological conditions. Nevertheless, enzymatic crosslinking emerged as an alternative to increase mechanical strength, which can be adjusted by the degree of enzymatic crosslinking. In this study, tyramine-modified gellan gum (Ty-GG) hydrogels were developed via horseradish peroxidase (HRP) crosslinking; and betamethasone was encapsulated within, to increase the specificity and safety in the treatment of patients with RA. Physicochemical results showed that it was possible to modify GG with tyramine, with a degree of substitution of approximately 30%. They showed high mechanical strength and resistance, presenting a controlled betamethasone release profile over time. Ty-GG hydrogels also exhibited no cytotoxic effects and do not negatively affected the metabolic activity and proliferation of chondrogenic primary cells. Furthermore, the main goal was achieved since betamethasone-loaded Ty-GG hydrogels demonstrated to have a more effective therapeutic effect when compared with the administration of betamethasone alone. Therefore, the developed Ty-GG hydrogels represent a promising DDS and a reliable alternative to traditional treatments in patients with RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang M, Wei J, Li H, Ouyang X, Sun X, Tang Y, et al. Leptin upregulates peripheral CD4+ CXCR5+ ICOS+ T cells via increased IL-6 in rheumatoid arthritis patients. J Interf Cytokine Res. 2018;38(2):86–92.

    Article  CAS  Google Scholar 

  2. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6(1):1–14.

    Article  CAS  Google Scholar 

  3. Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif Cells Nanomed Biotechnol. 2018;46(sup2):502–14.

    Article  CAS  PubMed  Google Scholar 

  4. Andersen NS, Cadahia JP, Previtali V, Bondebjerg J, Hansen CA, Hansen AE, et al. Methotrexate prodrugs sensitive to reactive oxygen species for the improved treatment of rheumatoid arthritis. Eur J Med Chem. 2018;156:738–46.

    Article  CAS  PubMed  Google Scholar 

  5. Gouveia VM, Lima SCA, Nunes C, Reis S. Non-biologic nanodelivery therapies for rheumatoid arthritis. J Biomed Nanotechnol. 2015;11(10):1701–21.

    Article  CAS  PubMed  Google Scholar 

  6. Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release. 2017;252:108–24.

    Article  CAS  PubMed  Google Scholar 

  7. Prosperi D, Colombo M, Zanoni I, Granucci F, editors. Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Semin Immunol; 2017: Elsevier.

  8. Feng X, Chen Y. Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. J Drug Target. 2018;26(10):845–57.

    Article  CAS  PubMed  Google Scholar 

  9. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007.

    Article  CAS  Google Scholar 

  10. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):1–17.

    Article  CAS  Google Scholar 

  11. Xu Y, Li Y, Chen Q, Fu L, Tao L, Wei Y. Injectable and self-healing chitosan hydrogel based on imine bonds: design and therapeutic applications. Int J Mol Sci. 2018;19(8):2198.

    Article  PubMed Central  CAS  Google Scholar 

  12. Yang J-A, Yeom J, Hwang BW, Hoffman AS, Hahn SK. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci. 2014;39(12):1973–86.

    Article  CAS  Google Scholar 

  13. Harding NE, Patel YN, Coleman RJ. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J Ind Microbiol Biotechnol. 2004;31(2):70–82.

    Article  CAS  PubMed  Google Scholar 

  14. Shin H, Olsen BD, Khademhosseini A. Gellan gum microgel-reinforced cell-laden gelatin hydrogels. J Mater Chem B. 2014;2(17):2508–16.

    Article  CAS  PubMed  Google Scholar 

  15. Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci. 2019;7(3):843–55.

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Sun Q, Li Q, Kawazoe N, Chen G. Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem. 2018;6:499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parhi R. Cross-linked hydrogel for pharmaceutical applications: a review. Adv Pharm Bull. 2017;7(4):515–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels… a review. Saudi Pharm J. 2016;24(5):554–9.

    Article  PubMed  Google Scholar 

  19. Khanmohammadi M, Dastjerdi MB, Ai A, Ahmadi A, Godarzi A, Rahimi A, et al. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater Sci. 2018;6(6):1286–98.

    Article  CAS  PubMed  Google Scholar 

  20. Lee F, Bae KH, Kurisawa M. Injectable hydrogel systems crosslinked by horseradish peroxidase. Biomed Mater. 2015;11(1):014101.

    Article  PubMed  CAS  Google Scholar 

  21. Ribeiro VP. Multifunctional silk fibroin-based constructs for tissue engineering and regenerative medicine applications. [Doctoral dissertation]. [Guimarães, PT]: Minho University; 2018.

  22. Ribeiro VP, da Silva MA, Maia FR, Canadas RF, Costa JB, Oliveira AL, et al. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomater. 2018;72:167–81.

    Article  CAS  PubMed  Google Scholar 

  23. Bae JW, Choi JH, Lee Y, Park KD. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications. J Tissue Eng Regen Med. 2015;9(11):1225–32.

    Article  CAS  PubMed  Google Scholar 

  24. Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018;107:678–88.

    Article  CAS  PubMed  Google Scholar 

  25. Prodanovic O, Spasojevic D, Prokopijevic M, Radotic K, Markovic N, Blazic M, et al. Tyramine modified alginates via periodate oxidation for peroxidase induced hydrogel formation and immobilization. React Funct Polym. 2015;93:77–83.

    Article  CAS  Google Scholar 

  26. Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, et al. Modified gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials. 2010;31(29):7494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reys LL, Silva SS, Soares da Costa D, Oliveira NM, Mano Jo F, Reis RL, et al. Fucoidan hydrogels photo-cross-linked with visible radiation as matrices for cell culture. ACS Biomater Sci Eng. 2016;2(7):1151–61.

    Article  CAS  PubMed  Google Scholar 

  28. Kim K, Park S, Yang J-A, Jeon J-H, Bhang S, Kim B-S, et al. Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater. 2011;7(2):666–74.

    Article  CAS  PubMed  Google Scholar 

  29. Darr A, Calabro A. Synthesis and characterization of tyramine-based hyaluronan hydrogels. J Mater Sci Mater Med. 2009;20(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  30. Loebel C, D’Este M, Alini M, Zenobi-Wong M, Eglin D. Precise tailoring of tyramine-based hyaluronan hydrogel properties using DMTMM conjugation. Carbohydr Polym. 2015;115:325–33.

    Article  CAS  PubMed  Google Scholar 

  31. Wennink JW, Niederer K, Bochyńska AI, Moreira Teixeira LS, Karperien M, Feijen J et al., editors. Injectable hydrogels by enzymatic co-crosslinking of dextran and hyaluronic acid tyramine conjugates. Macromol Symp; 2011: Wiley Online Library.

  32. Prokopijevic M, Prodanovic O, Spasojevic D, Kovacevic G, Polovic N, Radotic K, et al. Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization. Appl Microbiol Biotechnol. 2017;101(6):2281–90.

    Article  CAS  PubMed  Google Scholar 

  33. Jagur-Grodzinski J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol. 2010;21(1):27–47.

    Article  CAS  Google Scholar 

  34. Huang Y, Yu H, Xiao C. pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release. Carbohydr Polym. 2007;69(4):774–83.

    Article  CAS  Google Scholar 

  35. da Silva LP, Cerqueira MT, Sousa RA, Reis RL, Correlo VM, Marques AP. Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. Acta Biomater. 2014;10(11):4787–97.

    Article  PubMed  CAS  Google Scholar 

  36. Flory PJ. Thermodynamics of high polymer solutions. J Chem Phys. 1941;9(8):660.

    Article  CAS  Google Scholar 

  37. Jin R, Hiemstra C, Zhong Z, Feijen J. Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials. 2007;28(18):2791–800.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen QV, Park JH, Lee DS. Injectable polymeric hydrogels for the delivery of therapeutic agents: a review. Eur Polym J. 2015;72:602–19.

    Article  CAS  Google Scholar 

  39. Jin R, Lin C, Cao A. Enzyme-mediated fast injectable hydrogels based on chitosan-glycolic acid/tyrosine: preparation, characterization, and chondrocyte culture. Polym Chem. 2013;5. https://doi.org/10.1039/C3PY00864A.

  40. Buitrago-Vásquez M, Ossa-Orozco CP. Degradation, mater uptake, injectability and mechanical strength of injectable bone substitutes composed of silk fibroin and hydroxyapatite nanorods. Rev Fac the Ing. 2018;27(48):49–60.

    Article  Google Scholar 

  41. Nam JG, Hyun K, Ahn KH, Lee SJ. Phase angle of the first normal stress difference in oscillatory shear flow. Korea-Aust Rheol J. 2010;22(4):247–57.

    Google Scholar 

  42. Ngan CL, Basri M, Lye FF, Masoumi HRF, Tripathy M, Karjiban RA, et al. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene. Int J Nanomedicine. 2014;9:4375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cai Z, Zhang H, Wei Y, Wu M, Fu A. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomater Sci. 2019;7(8):3143–57.

    Article  CAS  PubMed  Google Scholar 

  44. Galesso D, Finelli I, Paradossi G, Renier D. Viscoelastic properties and elastic recovery of HYADD® 4 hydrogel compared to crosslinked HA-based commercial viscosupplements. Osteoarthr Cartil. 2012;20:S292.

    Article  Google Scholar 

  45. Lawless BM, Sadeghi H, Temple DK, Dhaliwal H, Espino DM, Hukins DW. Viscoelasticity of articular cartilage: analysing the effect of induced stress and the restraint of bone in a dynamic environment. J Mech Behav Biomed Mater. 2017;75:293–301.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Risbud MV, Bhonde RR. Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv. 2000;7(2):69–75.

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013;65(9):1215–33.

    Article  CAS  PubMed  Google Scholar 

  49. Dreyer SJ, Beckworth WJ. 2 - Commonly used medications in procedures. In: Lennard TA, Walkowski S, Singla AK, Vivian DG, editors. Pain Procedures in Clinical Practice. Third ed. Saint Louis: Hanley & Belfus; 2011. p. 5–12.

    Chapter  Google Scholar 

  50. Jacobs JWG, Bijlsma JWJ. Chapter 60 - Glucocorticoid therapy. In: Firestein GS, Budd RC, Gabriel SE, IB MI, O'Dell JR, editors. Kelley and Firestein's Textbook of Rheumatology. Tenth ed: Elsevier; 2017. p. 932–57.e5.

  51. Wernecke C, Braun HJ, Dragoo JL. The effect of intra-articular corticosteroids on articular cartilage: a systematic review. Orthop J Sports Med. 2015;3(5):2325967115581163. https://doi.org/10.1177/2325967115581163.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Østergaard M, Halberg P. Intra-articular corticosteroids in arthritic disease. BioDrugs. 1998;9(2):95–103. https://doi.org/10.2165/00063030-199809020-00002.

    Article  PubMed  Google Scholar 

  53. Silva-Correia J, Oliveira JM, Caridade S, Oliveira JT, Sousa R, Mano J, et al. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J Tissue Eng Regen Med. 2011;5(6):e97–e107.

    Article  CAS  PubMed  Google Scholar 

  54. Khang G, Lee S, Kim H, Silva-Correia J, Gomes ME, Viegas C, et al. Biological evaluation of intervertebral disc cells in different formulations of gellan gum-based hydrogels. J Tissue Eng Regen Med. 2015;9(3):265–75.

    Article  CAS  PubMed  Google Scholar 

  55. Silva-Correia J, Zavan B, Vindigni V, Oliveira MB, Mano J, Pereira H et al. Mechanical performance and biocompatibility study of methacrylated gellan gum hydrogels with potential for nucleus pulposus regeneration. J Tissue Eng Regen Med. 2012;6(2):18.

    Google Scholar 

  56. Kesavan K, Nath G, Pandit J. Preparation and in vitro antibacterial evaluation of gatifloxacin mucoadhesive gellan system. Daru. 2010;18(4):237.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Carmona-Moran C, Zavgorodnya O, Penman A, Kharlampieva E, Bridges S, Hergenrother R, et al. Development of gellan gum containing formulations for transdermal drug delivery: component evaluation and controlled drug release using temperature responsive nanogels. Int J Pharm. 2016;509:465–76. https://doi.org/10.1016/j.ijpharm.2016.05.062.

    Article  CAS  PubMed  Google Scholar 

  58. Norazemi N, Che Rose L, Rose, Mat Amin KA, Suhaimi H, Chan S-Y. Coated gellan gum hydrogel as a drug carrier for colon targeted drug delivery. J Sustain Sci Manag. 2017;2:36–41.

    Google Scholar 

Download references

Acknowledgments

I. Oliveira thanks the financial support under the Norte2020 project (“NORTE-08-5369-FSE-000044”), REMIX project (G.A. 778078 — REMIX — H2020-MSCA-RISE-2017), and Gilson Lab, Chonbuk National University, Republic of Korea. The FCT distinction attributed to J. Miguel Oliveira under the Investigator FCT program (IF/01285/2015) is also greatly acknowledged. C. Gonçalves also wish to acknowledge FCT for supporting her research (No. SFRH/BPD/94277/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Miguel Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of the country in which they were performed.

Animal studies

The national and institutional guidelines and certification for the animal experimentation were followed as approved by the Direcção Geral de Alimentação e Veterinária (DGAV) and following the local ethical committee recommendations.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, I.M., Gonçalves, C., Shin, M.E. et al. Enzymatically crosslinked tyramine-gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment. Drug Deliv. and Transl. Res. 11, 1288–1300 (2021). https://doi.org/10.1007/s13346-020-00855-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00855-9

Keywords

Navigation