Skip to main content

Advertisement

Log in

Ultrasound-based triggered drug delivery to tumors

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Over the past few decades, applications of ultrasound (US) in drug delivery have been documented widely for local and site-specific release of bioactives in a controlled manner, after acceptable use in mild physical therapy for tendinitis and bursitis, and for high-energy applications in fibroid ablation, cataract removal, bone fracture healing, etc. US is a non-invasive, efficient, targetable and controllable technique. Drug delivery can be enhanced by applying directed US in terms of targeting and intracellular uptake. US cannot only provide local hyperthermia but can also enhance local extravasations and permeability of the cell membrane for delivery of cell-impermeable and poorly permeable drugs. It is also found to increase the anticancer efficacy of drug against solid tumors by facilitating uniform drug delivery throughout the tumor mass. This review summarizes the mechanism of US; various drug delivery systems like microbubbles, liposomes, and micelles; and biological manifestations employed for improving treatment of cancer, i.e., hyperthermia and enhanced extravasation. Safety issues are also discussed for better therapeutic outcomes of US-assisted drug delivery to tumors. This review can be a beneficial asset to the scientists looking at non-invasive techniques (externally guided) for improving the anticancer potential of drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chowdhury SM, Lee T, Willmann JK. Ultrasound-guided drug delivery in cancer. Ultrasonography. 2017;36(3):171–84. 10.14366/usg.17021.

    Article  Google Scholar 

  2. Suslick KS. Sonochemistry. Sonochem Sci. 1990;247(4949):1439–45. https://doi.org/10.1126/science.247.4949.1439.

    CAS  Google Scholar 

  3. Hill C, Bamber J. Methodology for clinical investigation. Phys Princ Med Ultrason 2004:255-85. https://doi.org/10.1002/0470093978.

  4. Hynynen K. Macromolecular delivery across the blood–brain barrier. Macromol Drug Deliv Methods Protocol. 2009;480:175–85. https://doi.org/10.1007/978-1-59745-429-2_13.

  5. Jernberg A. Ultrasound, ions and combined modalities for increased local tumour cell death in radiation therapy. Sweden: Institutionen för onkologi-patologi/Department of Oncology-Pathology; 2007.

    Google Scholar 

  6. Jain A, Jain SK. Liposomes in cancer therapy. Nanocarrier systems for drug delivery. Nova Science Publishers, https://www.novapublishers.com/catalog/product_info.php?products_id=59761&osCsid=e7d370318f328e75748328a1e44e48aa; 2016. p. 1–42.

  7. Jain A, Jain S. Ligand-mediated drug-targeted liposomes. Liposomal delivery systems: advances and challenges. Future Medicine: UK; 2016. https://doi.org/10.4155/FSEB2013.14.251.

    Google Scholar 

  8. Saraf S, Jain A, Hurkat P, Jain SK. Topotecan liposomes: a visit from a molecular to a therapeutic platform. Crit Rev Ther Drug Carrier Syst. 2016;33(5):401–32. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015926.

    Article  PubMed  Google Scholar 

  9. Harvey EN, Harvey EB, Loomis AL. Further observations on the effect of high frequency sound waves on living matter. Biol Bull. 1928;55(6):459–69. https://doi.org/10.2307/1536801.

    Article  Google Scholar 

  10. Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol. 1942;26(2):179–93. https://doi.org/10.1085/jgp.26.2.179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goss S, Frizzell L, Dunn F. Ultrasonic absorption and attenuation in mammalian tissues. Ultrasound Med Biol. 1979;5(2):181–6. https://doi.org/10.1016/0301-5629(79)90086-3.

    Article  CAS  PubMed  Google Scholar 

  12. Lee C, Frizzell L. Exposure levels for ultrasonic cavitation in the mouse neonate. Ultrasound Med Biol. 1988;14(8):735–42. https://doi.org/10.1016/0301-5629(88)90029-4.

    Article  CAS  PubMed  Google Scholar 

  13. O'Brien WD, Simpson DG, Ho M-H, Miller RJ, Frizzell LA, Zachary JF. Superthreshold behavior and threshold estimation of ultrasound-induced lung hemorrhage in pigs: role of age dependency. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(2):153–69. https://doi.org/10.1109/TUFFC.2003.1182119.

    Article  PubMed  Google Scholar 

  14. Billard B, Hynynen K, Roemer R. Effects of physical parameters on high temperature ultrasound hyperthermia. Ultrasound Med Biol. 1990;16(4):409–20. https://doi.org/10.1016/0301-5629(90)90070-S.

    Article  CAS  PubMed  Google Scholar 

  15. Daum DR, Smith NB, King R, Hynynen K. In vivo demonstration of noninvasive thermal surgery of the liver and kidney using an ultrasonic phased array. Ultrasound Med Biol. 1999;25(7):1087–98. https://doi.org/10.1016/S0301-5629(99)00053-8.

    Article  CAS  PubMed  Google Scholar 

  16. Damianou C, Hynynen K. The effect of various physical parameters on the size and shape of necrosed tissue volume during ultrasound surgery. J Acoust Soc Am. 1994;95(3):1641–9. https://doi.org/10.1121/1.408550.

    Article  CAS  PubMed  Google Scholar 

  17. Pichardo S, Sin VW, Hynynen K. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Phys Med Biol. 2010;56(1):219–50. https://doi.org/10.1088/0031-9155/56/1/014.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burtnyk M, N’Djin WA, Kobelevskiy I, Bronskill M, Chopra R. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms. Phys Med Biol. 2010;55(22):6817–39. https://doi.org/10.1088/0031-9155/55/22/014.

    Article  PubMed  Google Scholar 

  19. Pichardo S, Hynynen K. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study. Phys Med Biol. 2007;52(24):7313–32. https://doi.org/10.1088/0031-9155/52/24/008.

    Article  PubMed  Google Scholar 

  20. Pichardo S, Hynynen K. New design for an endoesophageal sector-based array for the treatment of atrial fibrillation: a parametric simulation study. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(3):600–12. https://doi.org/10.1109/TUFFC.2009.1076.

    Article  PubMed  Google Scholar 

  21. Engel DJ, Muratore R, Hirata K, Otsuka R, Fujikura K, Sugioka K, et al. Myocardial lesion formation using high-intensity focused ultrasound. J Am Soc Echocardiogr. 2006;19(7):932–7. https://doi.org/10.1016/j.echo.2006.02.012.

  22. Jin Z, Choi Y, Ko SY, Park JO, Park S. Experimental and simulation studies on focused ultrasound triggered drug delivery. Biotechnol Appl Biochem. 2017;64(1):134–42. https://doi.org/10.1002/bab.1453.

    Article  CAS  PubMed  Google Scholar 

  23. Leong T, Ashokkumar M, Kentish S. The fundamentals of power ultrasound—a review. Acoust Aust. 2011;39(2):54–63.

    Google Scholar 

  24. Hill C. The wider context of sonography. Phys Princ Med Ultrason. 2004:337–47.

  25. Chavrier F, Chapelon J, Gelet A, Cathignol D. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles. J Acoust Soc Am. 2000;108(1):432–40. https://doi.org/10.1121/1.429476.

    Article  CAS  PubMed  Google Scholar 

  26. Sassaroli E, Hynynen K. Forced linear oscillations of microbubbles in blood capillaries. J Acoust Soc Am. 2004;115(6):3235–43. https://doi.org/10.1121/1.1738456.

    Article  CAS  PubMed  Google Scholar 

  27. Sokka S, Gauthier T, Hynynen K. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation. Phys Med Biol. 2005;50(9):2167–79. https://doi.org/10.1088/0031-9155/50/9/017.

    Article  CAS  PubMed  Google Scholar 

  28. Aptel F, Lafon C. Therapeutic applications of ultrasound in ophthalmology. Int J Hyperth. 2012;28(4):405–18. https://doi.org/10.3109/02656736.2012.665566.

    Article  CAS  Google Scholar 

  29. Zhou Y-F. High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol. 2011;2(1):8–27. https://doi.org/10.5306/wjco.v2.i1.8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Melodelima D, N'Djin WA, Parmentier H, Chesnais S, Rivoire M, Chapelon J-Y. Thermal ablation by high-intensity-focused ultrasound using a toroid transducer increases the coagulated volume. Results of animal experiments. Ultrasound Med Biol. 2009;35(3):425–35. https://doi.org/10.1016/j.ultrasmedbio.2008.09.020.

    Article  PubMed  Google Scholar 

  31. Zhang K, Xu H, Jia X, Chen Y, Ma M, Sun L, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano. 2016;10(12):10816–28. https://doi.org/10.1021/acsnano.6b04921.

  32. Paparel P, Curiel L, Chesnais S, Ecochard R, Chapelon JY, Gelet A. Synergistic inhibitory effect of high-intensity focused ultrasound combined with chemotherapy on Dunning adenocarcinoma. BJU Int. 2005;95(6):881–5. https://doi.org/10.1111/j.1464-410X.2005.05420.x.

    Article  PubMed  Google Scholar 

  33. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen KMR. Imaging–guided focused ultrasound surgery of uterine leiomyomas: a feasibility study 1. Radiology. 2003;226(3):897–905. https://doi.org/10.1148/radiol.2271020395.

    Article  PubMed  Google Scholar 

  34. Harris GR, editor. FDA regulation of clinical high intensity focused ultrasound (HIFU) devices. Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE; 2009: IEEE.

  35. Grull H, Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release. 2012;161(2):317–27. https://doi.org/10.1016/j.jconrel.2012.04.041.

    Article  PubMed  Google Scholar 

  36. Güvener N, Appold L, de Lorenzi F, Golombek SK, Rizzo LY, Lammers T, et al. Recent advances in ultrasound-based diagnosis and therapy with micro-and nanometer-sized formulations. Methods (San Diego, Calif). 2017;130:4–13. https://doi.org/10.1016/j.ymeth.2017.05.018.

  37. Husseini GA, Pitt WG. Ultrasonic-activated micellar drug delivery for cancer treatment. J Pharm Sci. 2009;98(3):795–811. https://doi.org/10.1002/jps.21444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov. 2005;4(3):255–60. https://doi.org/10.1038/nrd1662.

    Article  CAS  PubMed  Google Scholar 

  39. Escobar-Chavez JJ, Bonilla-Martínez D, Villegas-González MA, Rodríguez-Cruz IM, Domínguez-Delgado CL. The use of sonophoresis in the administration of drugs throughout the skin. J Pharm Pharm Sci. 2009;12(1):88–115. https://doi.org/10.18433/J3C30D.

    Article  CAS  PubMed  Google Scholar 

  40. Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res. 2009;104(5):679–87. https://doi.org/10.1161/CIRCRESAHA.108.183806.

    Article  CAS  PubMed  Google Scholar 

  41. Kedar RP, Cosgrove D, McCready VR, Bamber JC, Carter ER. Microbubble contrast agent for color Doppler US: effect on breast masses. Work in progress. Radiology. 1996;198(3):679–86. https://doi.org/10.1148/radiology.198.3.8628854.

    Article  CAS  PubMed  Google Scholar 

  42. Shin SH, Park E-J, Min C, Choi SI, Jeon S, Kim Y-H, et al. Tracking perfluorocarbon nanoemulsion delivery by 19F MRI for precise high intensity focused ultrasound tumor ablation. Theranostics. 2017;7(3):562–72. https://doi.org/10.7150/thno.16895.

  43. Ries F, Honisch C, Lambertz M, Schlief R. A transpulmonary contrast medium enhances the transcranial Doppler signal in humans. Stroke. 1993;24(12):1903–9. https://doi.org/10.1161/01.STR.24.12.1903.

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Pepe J, Rincon M. Sonoporation, anti-cancer drug and antibody delivery using ultrasound. Ultrasonics. 2006;44:e21–e5. https://doi.org/10.1016/j.ultras.2006.06.033.

    Article  PubMed  Google Scholar 

  45. Togtema M, Pichardo S, Jackson R, Lambert PF, Curiel L, Zehbe I. Sonoporation delivery of monoclonal antibodies against human papillomavirus 16 E6 restores p53 expression in transformed cervical keratinocytes. PLoS One. 2012;7(11):e50730. https://doi.org/10.1371/journal.pone.0050730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liang H, Tang J, Halliwell M. Sonoporation, drug delivery, and gene therapy. Proc Inst Mech Eng H J Eng Med. 2010;224(2):343–61. https://doi.org/10.1243/09544119JEIM565.

    Article  Google Scholar 

  47. Ferrante E, Pickard J, Rychak J, Klibanov A, Ley K. Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release. 2009;140(2):100–7. https://doi.org/10.1016/j.jconrel.2009.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer. 2007;121(4):901–7. https://doi.org/10.1002/ijc.22732.

    Article  CAS  PubMed  Google Scholar 

  49. Jain A, Jain SK. Brain targeting using surface functionalized nanocarriers in human solid tumors. In: Singh B, Jain NK, Katare OP, editors. Drug nanocarriers, Series Nanobiomedicine, vol series ISBN: 1-62699-050-6. Houston LLC: Studium press; 2014. p. 203–55.

    Google Scholar 

  50. Jain A, Jain SK. Ligand-appended BBB-targeted Nanocarriers (LABTNs). Crit Rev Ther Drug Carrier Syst. 2015;32(2):149–80. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2015010903.

    Article  PubMed  Google Scholar 

  51. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA, Noninvasive MR. Imaging–guided focal opening of the blood-brain barrier in rabbits 1. Radiology. 2001;220(3):640–6. https://doi.org/10.1148/radiol.2202001804.

    Article  CAS  PubMed  Google Scholar 

  52. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol. 2004;30(7):979–89. https://doi.org/10.1016/j.ultrasmedbio.2004.04.010.

    Article  PubMed  Google Scholar 

  53. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage. 2005;24(1):12–20. https://doi.org/10.1016/j.neuroimage.2004.06.046.

    Article  PubMed  Google Scholar 

  54. Alonso A, Reinz E, Leuchs B, Kleinschmidt J, Fatar M, Geers B, et al. Focal delivery of AAV2/1-transgenes into the rat brain by localized ultrasound-induced BBB opening. Mol Ther-Nucleic Acids. 2013;2:e73.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Park J, Aryal M, Vykhodtseva N, Zhang Y-Z, McDannold N. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release. 2017;250:77–85. https://doi.org/10.1016/j.jconrel.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  56. Airan RD, Meyer RA, Ellens NP, Rhodes KR, Farahani K, Pomper MG, et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 2017;17(2):652–9. https://doi.org/10.1021/acs.nanolett.6b03517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jain A, Jain SK. Stimuli-responsive smart liposomes in cancer targeting. Curr Drug Targets. 2016;17(11):1–11. https://doi.org/10.2174/1389450117666160208144143.

  58. Jain A, Gulbake A, Jain A, Shilpi S, Hurkat P, Jain SK. Dual drug delivery using “smart” liposomes for triggered release of anticancer agents. J Nanopart Res. 2013;15(7):1–12.

    Article  Google Scholar 

  59. Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1–2):112–25. https://doi.org/10.1016/j.jconrel.2013.03.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jain A, Jain SK. Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev Ind Pharm. 2016;42(1):136–49. https://doi.org/10.3109/03639045.2015.1036066.

    Article  CAS  PubMed  Google Scholar 

  61. Hynynen K, Lulu B. Hyperthermia in cancer treatment. Investig Radiol. 1990;25(7):824–34. https://doi.org/10.1097/00004424-199007000-00014.

    Article  CAS  Google Scholar 

  62. Staruch RM, Ganguly M, Tannock IF, Hynynen K, Chopra R. Enhanced drug delivery in rabbit VX2 tumours using thermosensitive liposomes and MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia. 2012;28(8):776–87. https://doi.org/10.3109/02656736.2012.736670.

    Article  CAS  PubMed  Google Scholar 

  63. Li L, ten Hagen TL, Hossann M, Süss R, van Rhoon GC, Eggermont AM, et al. Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J Control Release. 2013;168(2):142–50. https://doi.org/10.1016/j.jconrel.2013.03.011.

    Article  CAS  PubMed  Google Scholar 

  64. Jain A, Jain SK. Colon targeted liposomal systems (CTLS): theranostic potential. Curr Mol Med. 2015;15(7):621–33. https://doi.org/10.2174/1566524015666150831131320.

    Article  CAS  PubMed  Google Scholar 

  65. Jain A, Jain SK. Environmentally responsive chitosan-based nanocarriers (CBNs). Handb Polym Pharm Technol Biodegrad Polym. 2015;3:105.

    CAS  Google Scholar 

  66. Jain A, Jain SK. Chapter 9: Application potential of engineered liposomes in tumor targeting. Multifunctional systems for combined delivery, biosensing and diagnostics. Elsevier - Health Sciences Division, https://www.elsevier.com/books/multifunctional-systems-for-combined-delivery-biosensing-and-diagnostics/grumezescu/978-0-323-52725-5; 2017. p. 171–92.

  67. Ranjan A, Jacobs GC, Woods DL, Negussie AH, Partanen A, Yarmolenko PS, et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release. 2012;158(3):487–94. https://doi.org/10.1016/j.jconrel.2011.12.011.

  68. Köhler MO, Mougenot C, Quesson B, Enholm J, Le Bail B, Laurent C, et al. Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry. Med Phys. 2009;36(8):3521–35. https://doi.org/10.1118/1.3152112.

  69. Hijnen N, Kneepkens E, de Smet M, Langereis S, Heijman E, Grüll H. Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci. 2017:201700790.

  70. Dai M, Wu C, Fang H-M, Li L, Yan J-B, Zeng D-L et al. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery. J Microencapsul. 2017(just-accepted):1–18.

  71. Jang KW, Seol D, Ding L, Heo DN, Lee SJ, Martin JA, et al. Ultrasound-triggered PLGA microparticle destruction and degradation for controlled delivery of local cytotoxicity and drug release. Int J Biol Macromol. 2017; https://doi.org/10.1016/j.ijbiomac.2017.08.125.

  72. Boissenot T, Bordat A, Larrat B, Varna M, Chacun H, Paci A, et al. Ultrasound-induced mild hyperthermia improves the anticancer efficacy of both Taxol® and paclitaxel-loaded nanocapsules. J Control Release. 2017;264:219–27. https://doi.org/10.1016/j.jconrel.2017.08.041.

  73. Feng G, Hao L, Xu C, Ran H, Zheng Y, Li P, et al. High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring. Int J Nanomedicine. 2017;12:4647–59. https://doi.org/10.2147/IJN.S135391.

  74. Zhang N, Li J, Hou R, Zhang J, Wang P, Liu X, et al. Bubble-generating nano-lipid carriers for ultrasound/CT imaging-guided efficient tumor therapy. Int J Pharm. 2017;534(1-2):251–62. https://doi.org/10.1016/j.ijpharm.2017.07.081.

  75. Santos MA, Goertz DE, Hynynen K. Focused ultrasound hyperthermia mediated drug delivery using thermosensitive liposomes and visualized with in vivo two-photon microscopy. Theranostics. 2017;7(10):2718–31. https://doi.org/10.7150/thno.19662.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Umemura S, Yumita N, Nishigaki R, Umemura K. Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Cancer Sci. 1990;81(9):962–6.

    CAS  Google Scholar 

  77. Trendowski M. The promise of sonodynamic therapy. Cancer Metastasis Rev. 2014;33(1):143–60. https://doi.org/10.1007/s10555-013-9461-5.

    Article  CAS  PubMed  Google Scholar 

  78. Chen H, Zhou X, Gao Y, Zheng B, Tang F, Huang J. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today. 2014;19(4):502–9. https://doi.org/10.1016/j.drudis.2014.01.010.

    Article  CAS  PubMed  Google Scholar 

  79. Costley D, Mc Ewan C, Fowley C, McHale AP, Atchison J, Nomikou N, et al. Treating cancer with sonodynamic therapy: a review. Int J Hyperth. 2015;31(2):107–17. https://doi.org/10.3109/02656736.2014.992484.

  80. Liu Q, Wang X, Wang P, Xiao L, Hao Q. Comparison between sonodynamic effect with protoporphyrin IX and hematoporphyrin on sarcoma 180. Cancer Chemother Pharmacol. 2007;60(5):671–80. https://doi.org/10.1007/s00280-006-0413-4.

    Article  CAS  PubMed  Google Scholar 

  81. Zhu B, Liu Q, Wang Y, Wang X, Wang P, Zhang L, et al. Comparison of accumulation, subcellular location, and sonodynamic cytotoxicity between hematoporphyrin and protoporphyrin IX in L1210 cells. Chemotherapy. 2010;56(5):403–10. https://doi.org/10.1159/000317743.

  82. Sugita N, Iwase Y, Yumita N, Ikeda T, Umemura S-I. Sonodynamically induced cell damage using rose bengal derivative. Anticancer Res. 2010;30(9):3361–6.

    CAS  PubMed  Google Scholar 

  83. Chen M, Xu A, He W, Ma W, Shen S. Ultrasound triggered drug delivery for mitochondria targeted sonodynamic therapy. J Drug Deliv Sci Technol. 2017;39:501–7. https://doi.org/10.1016/j.jddst.2017.05.009.

    Article  CAS  Google Scholar 

  84. Suzuki N, Okada K, Chida S, Komori C, Shimada Y, Suzuki T. Antitumor effect of acridine orange under ultrasonic irradiation in vitro. Anticancer Res. 2007;27(6B):4179–84.

    CAS  PubMed  Google Scholar 

  85. Z-Y X, Wang K, Li X-Q, Chen S, Deng J-M, Cheng Y, et al. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics. 2013;53(1):232–8.

    Article  Google Scholar 

  86. Hiraoka W, Honda H, Feril LB, Kudo N, Kondo T. Comparison between sonodynamic effect and photodynamic effect with photosensitizers on free radical formation and cell killing. Ultrason Sonochem. 2006;13(6):535–42. https://doi.org/10.1016/j.ultsonch.2005.10.001.

    Article  CAS  PubMed  Google Scholar 

  87. Stępniewski M, Kepczynski M, Jamróz D, Nowakowska M, Rissanen S, Vattulainen I, et al. Interaction of hematoporphyrin with lipid membranes. J Phys Chem B. 2012;116(16):4889–97. https://doi.org/10.1021/jp300899b.

  88. Tang W, Liu Q, Wang X, Mi N, Wang P, Zhang J. Membrane fluidity altering and enzyme inactivating in sarcoma 180 cells post the exposure to sonoactivated hematoporphyrin in vitro. Ultrasonics. 2008;48(1):66–73. https://doi.org/10.1016/j.ultras.2007.10.002.

    Article  CAS  PubMed  Google Scholar 

  89. Qian X, Zheng Y, Chen Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Advanced materials (Deerfield Beach, Fla). 2016;28(37):8097–129. https://doi.org/10.1002/adma.201602012.

    Article  CAS  Google Scholar 

  90. Kujawska T, Secomski W, Bilmin K, Nowicki A, Grieb P. Impact of thermal effects induced by ultrasound on viability of rat C6 glioma cells. Ultrasonics. 2014;54(5):1366–72. https://doi.org/10.1016/j.ultras.2014.02.002.

    Article  CAS  PubMed  Google Scholar 

  91. Li L, Chen Y, Wang X, Feng X, Wang P, Liu Q. Comparison of protoporphyrin IX produced cell proliferation inhibition between human breast cancer MCF-7 and MDA-MB-231 cells. Die Pharm—Int J Pharm Sci. 2014;69(8):621–8.

    CAS  Google Scholar 

  92. Guo S, Sun X, Cheng J, Xu H, Dan J, Shen J, et al. Apoptosis of THP-1 macrophages induced by protoporphyrin IX-mediated sonodynamic therapy. Int J Nanomedicine. 2013;8:2239–46. https://doi.org/10.2147/IJN.S43717.

  93. Serpe L, Giuntini F. Sonodynamic antimicrobial chemotherapy: first steps towards a sound approach for microbe inactivation. J Photochem Photobiol B Biol. 2015;150:44–9. https://doi.org/10.1016/j.jphotobiol.2015.05.012.

    Article  CAS  Google Scholar 

  94. Zhang H, Liu X, Liu Y, Wu Y, Li H, Zhao C, et al. Effect of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on hypertrophic scarring. PLoS One. 2014;9(1):e86003. https://doi.org/10.1371/journal.pone.0086003.

  95. Machet L, Boucaud A. Phonophoresis: efficiency, mechanisms and skin tolerance. Int J Pharm. 2002;243(1):1–15. https://doi.org/10.1016/S0378-5173(02)00299-5.

    Article  CAS  PubMed  Google Scholar 

  96. Samulski T, Grant W, Oleson J, Leopold K, Dewhirst M, Vallario P, et al. Clinical experience with a multi-element ultrasonic hyperthermia system: analysis of treatment temperatures. Int J Hyperth. 1990;6(5):909–22. https://doi.org/10.3109/02656739009140972.

    Article  CAS  Google Scholar 

  97. Klingler HC, Susani M, Seip R, Mauermann J, Sanghvi N, Marberger MJ. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. Eur Urol. 2008;53(4):810–8. https://doi.org/10.1016/j.eururo.2007.11.020.

    Article  PubMed  Google Scholar 

  98. McAteer J, Bailey M, Williams JJ, Cleveland R, Evan A. Strategies for improved shock wave lithotripsy. Minerva Urol Nefrol= Ital J Urol Nephrol. 2005;57(4):271–87.

    CAS  Google Scholar 

  99. Koga H, Matsuoka K, Noda S, Yamashita T. Cumulative renal damage in dogs by repeated treatment with extracorporeal shock waves. Int J Urol. 1996;3(2):134–40. https://doi.org/10.1111/j.1442-2042.1996.tb00498.x.

  100. Kim SC, Matlaga BR, Tinmouth WW, Kuo RL, Evan AP, McAteer JA, et al. In vitro assessment of a novel dual probe ultrasonic intracorporeal lithotriptor. J Urol. 2007;177(4):1363–5. https://doi.org/10.1016/j.juro.2006.11.033.

  101. Lowe G, Knudsen BE. Ultrasonic, pneumatic and combination intracorporeal lithotripsy for percutaneous nephrolithotomy. J Endourol. 2009;23(10):1663–8. https://doi.org/10.1089/end.2009.1533.

    Article  PubMed  Google Scholar 

  102. Packer M, Fishkind WJ, Fine IH, Seibel BS, Hoffman RS. The physics of phaco: a review. J Cataract Refract Surg. 2005;31(2):424–31. https://doi.org/10.1016/j.jcrs.2004.11.027.

    Article  PubMed  Google Scholar 

  103. Parikh S, Motarjeme A, McNamara T, Raabe R, Hagspiel K, Benenati JF, et al. Ultrasound-accelerated thrombolysis for the treatment of deep vein thrombosis: initial clinical experience. J Vasc Interv Radiol. 2008;19(4):521–8. https://doi.org/10.1016/j.jvir.2007.11.023.

  104. Farinha A, Kellogg S, Dickinson K, Davison T. Skin impedance reduction for electrophysiology measurements using ultrasonic skin permeation: initial report and comparison to current methods. Biomed Instrum Technol. 2006;40(1):72–7. https://doi.org/10.2345/0899-8205(2006)40[72:SIRFEM]2.0.CO;2.

    Article  PubMed  Google Scholar 

  105. Gebauer D, Mayr E, Orthner E, Ryaby JP. Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol. 2005;31(10):1391–402. https://doi.org/10.1016/j.ultrasmedbio.2005.06.002.

    Article  PubMed  Google Scholar 

  106. Tung CH, Han MS, Kim Y, Qi J, O'Neill BE. Tumor ablation using low-intensity ultrasound and sound excitable drug. J Controlled release : Off J Control Release Soc. 2017;258:67–72. https://doi.org/10.1016/j.jconrel.2017.05.009.

    Article  CAS  Google Scholar 

  107. Staruch R, Chopra R, Hynynen K. Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperth. 2011;27(2):156–71. https://doi.org/10.3109/02656736.2010.518198.

    Article  CAS  Google Scholar 

  108. Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 2000;60(24):6950–7.

  109. Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40. https://doi.org/10.1016/j.chemphyslip.2016.10.005.

    Article  CAS  Google Scholar 

  110. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  111. White SC, Lorigan P, Margison GP, Margison JM, Martin F, Thatcher N, et al. Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer. Br J Cancer. 2006;95(7):822–8. https://doi.org/10.1038/sj.bjc.6603345.

  112. Yudina A, Lepetit-Coiffé M, De Smet M, Langereis S, Grüll H, Moonen C. Vivo temperature controlled ultrasound-mediated intracellular delivery of cell-impermeable compounds. J Control Release. 2012;161(1):90–7. https://doi.org/10.1016/j.jconrel.2012.04.018.

    Article  PubMed  Google Scholar 

  113. Min HS, Son S, You DG, Lee TW, Lee J, Lee S, et al. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery. Biomaterials. 2016;108:57–70. https://doi.org/10.1016/j.biomaterials.2016.08.049.

  114. Lin W, Xie X, Deng J, Liu H, Chen Y, Fu X, et al. Cell-penetrating peptide-doxorubicin conjugate loaded NGR-modified nanobubbles for ultrasound triggered drug delivery. J Drug Target. 2016;24(2):134–46. https://doi.org/10.3109/1061186X.2015.1058802.

  115. Xie X, Lin W, Liu H, Deng J, Chen Y, Liu H, et al. Ultrasound-responsive nanobubbles contained with peptide–camptothecin conjugates for targeted drug delivery. Drug Deliv. 2016;23(8):2756–64. https://doi.org/10.3109/10717544.2015.1077289.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Jain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Tiwari, A., Verma, A. et al. Ultrasound-based triggered drug delivery to tumors. Drug Deliv. and Transl. Res. 8, 150–164 (2018). https://doi.org/10.1007/s13346-017-0448-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0448-6

Keywords

Navigation