Skip to main content

Advertisement

Log in

Ex vivo permeation of erythropoietin through porcine conjunctiva, cornea, and sclera

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The aim of this study is to test the permeation of human recombinant erythropoietin (rHuEPO) across conjunctiva, cornea, and sclera in an ex vivo model. Thirty fresh pig eyes were collected from a slaughterhouse. Conjunctivas (n = 10), corneas (n = 10), and scleras (n = 10) were surgically dissected from surrounding tissues. Ocular membranes were placed into Franz diffusion cells and rHuEPO was administered into the donor phase of each cell, except for control samples. Samples were collected from the receptor phase at seven time points, from 30 min to 6 h of incubation. Erythropoietin (EPO) was quantified by enzyme-linked immunosorbent assay (ELISA) technique. Ocular membranes immunohistochemistry was also performed at the end of the study. EPO was detected in all test samples. After 6 h of incubation, conjunctiva was the most permeable membrane to rHuEPO (509.3 ± 89.8 mIU/cm2, corresponding to 0.52% of the total rHuEPO administered on the donor phase), followed by sclera (359.1 ± 123.7 mIU/cm2, corresponding to 0.35%) and finally cornea (71.0 ± 31.8 mIU/cm2, corresponding to 0.07%). Differences between ocular membranes’ permeation were statistically significant (p < 0.001). EPO immunostaining signal was positive for the three ocular membranes. We have demonstrated in an ex vivo model that porcine conjunctiva, cornea, and sclera are permeable to rHuEPO protein. These are promising results concerning ocular EPO administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aghdam KV, et al. Erythropoietin in ophthalmology: a literature review. J Curr Ophthalmol. 2016;28:5–11.

    Article  Google Scholar 

  2. Fisher JW. Landmark advances in the development of erythropoietin. Exp Biol Med. 2010;235:1398–411.

    Article  CAS  Google Scholar 

  3. Luo W, et al. The protective effect of erythropoietin on the retina. Ophthalmic Res. 2015;53:74–81.

    Article  CAS  PubMed  Google Scholar 

  4. Grasso G, et al. The role of erythropoietin in neuroprotection: therapeutic perspectives. Drug News Perspect. 2007;20(5):315–20.

    Article  CAS  PubMed  Google Scholar 

  5. Bartesaghi S, et al. Erythropoietin: a novel neuroprotective cytokine. Neurotoxicology. 2005;26(5):923–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bond WS, Rex TS. Evidence that erythropoietin modulates neuroinflammation through differential action on neurons, astrocytes, and microglia. Front Immunol. 2014;22(5):523.

    Google Scholar 

  7. Zhong L, et al. Erythropoietin promotes survival of retinal ganglion cells in DBA/2J glaucoma mice. Invest Ophthalmol Vis Sci. 2007;48(3):1212–8.

    Article  PubMed  Google Scholar 

  8. Tsai JC, et al. Intravitreal administration of erythropoietin and preservation of retinal ganglion cells in an experimental rat model of glaucoma. Curr Eye Res. 2005;30:1025–31.

    Article  CAS  PubMed  Google Scholar 

  9. Zhong Y-S, et al. Erythropoietin with retrobulbar administration protects retinal ganglion cells from acute elevated intraocular pressure in rats. J Ocul Pharmacol Ther. 2008;24(5):453–9.

    Article  CAS  PubMed  Google Scholar 

  10. King CE, et al. Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transection. Exp Neurol. 2007;205(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  11. Lagreze WA, et al. Feasibility of intravitreal erythropoietin injections in humans. Br J Ophthalmol. 2009;93:1667–71.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong Y, et al. Promotion of neurite outgrowth and protective effect of erythropoietin on the retinal neurons of rats. Graefes Arch Clin Exp Ophthalmol. 2007;245(12):1859–67.

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo SK, et al. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–51.

    Article  CAS  PubMed  Google Scholar 

  14. Jordan J, Ruiz-Moreno JM. Advances in the understanding of retinal drug disposition and the role of blood–ocular barrier transporters. Expert Opin Drug Metab Toxicol. 2013;9(9):1181–92.

    CAS  PubMed  Google Scholar 

  15. Resende AP, et al. Alternative route for erythropoietin ocular administration. Graefes Arch Clin Exp Ophthalmol. 2013;251(8):2051–9.

    Article  CAS  PubMed  Google Scholar 

  16. Resende AP, et al. Ocular erythropoietin penetration after subconjunctival administration in glaucomatous rats. Ophthalmic Res. 2015;56(2):104–10.

    Article  Google Scholar 

  17. Pescina S, et al. Permeation of proteins, oligonucleotide and dextrans across ocular tissues: experimental studies and a literature update. J Pharm Sci. 2015;104(7):2190–202.

    Article  CAS  PubMed  Google Scholar 

  18. Kim YC, et al. Ocular delivery of macromolecules. J Control Release. 2014;28(190):172–81.

    Article  Google Scholar 

  19. Bento R, et al. Recombinant human erythropoietin in sports: a review. Rev Bras Med Esporte. 2003;9(3):181–90.

    Article  Google Scholar 

  20. Hosoya K, Lee VHL, Kim KJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm. 2005;60:227–40.

    Article  CAS  PubMed  Google Scholar 

  21. Maggs D et al. Slatter’s fundamentals of veterinary ophthalmology. 4th ed. Saunders; 2008.

  22. Samuelson D. Ophthalmic anatomy. In: Gelatt K et al. Wiley-Blackwell; 2013. p. 39–170.

    Google Scholar 

  23. Wen H, et al. Characterization of human sclera barrier properties for transscleral delivery of bevacizumab and ranibizumab. J Pharm Sci. 2013;102:892–903.

    Article  CAS  PubMed  Google Scholar 

  24. Pescina S, et al. In-vitro permeation of bevacizumab through human sclera: effect of iontophoresis application. J Pharm Pharmacol. 2010;62:1189–94.

    Article  CAS  PubMed  Google Scholar 

  25. Ambati J, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41(5):1181–5.

    CAS  PubMed  Google Scholar 

  26. Agarwal P, Rupenthal ID. In vitro and ex vivo corneal penetration and absorption models. Drug Deliv Transl Res. 2016;6(6):634–47.

    Article  CAS  PubMed  Google Scholar 

  27. Development and validation of in vitro release testing methods for semisolid formulation. Particle Sciences, Inc. Technical Brief. 2009; 10.

  28. Remington LA. Cornea and sclera. In: Remington LA, editor. Clinical anatomy and physiology of the visual system. 3rd ed. Saint Louis: Butterworth-Heinemann; 2012. p. 10–39.

    Chapter  Google Scholar 

  29. Nomoto H, et al. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest Ophthalmol Vis Sci. 2009;50:4807–13.

    Article  PubMed  Google Scholar 

  30. Demetriades AM, et al. Trans-scleral delivery of antiangiogenic proteins. J Ocul Pharmacol Ther. 2008;24:70–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lee VHL, Hosoya K. Drug delivery to the posterior segment. In: Ryan SJ, editor. Retina. 3rd ed. St Louis, MO: Mosby; 2001. p. 2270–85.

    Google Scholar 

  32. Koevary SB. Pharmacokinetics of topical ocular drug delivery: potential uses for the treatment of diseases of the posterior segment and beyond. Curr Drug Metab. 2003;4(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu A, Martosella J & Duong PT. Peptide mapping of glycoprotein erythropoietin by HILIC LC/MS and RP-LC/MS. Agilent Technologies, Inc., USA May 10, 2013.

  34. Shirley Ding SL et al. Revisiting the role of erythropoietin for treatment of ocular disorders. Eye (London, England). 2016; 30(10):1293–1309.

Download references

Acknowledgements

This work was supported by the European Society of Veterinary Ophthalmology Research Grant (ESVO-2015) and by Fundação para a Ciência e Tecnologia (FCT) through Project UID/CVT/00276/2013 of Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA) and through project UID/DTP/04138/2013 of Research Institute for Medicines (iMed.ULisboa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Resende.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resende, A.P., Silva, B., Braz, B.S. et al. Ex vivo permeation of erythropoietin through porcine conjunctiva, cornea, and sclera. Drug Deliv. and Transl. Res. 7, 625–631 (2017). https://doi.org/10.1007/s13346-017-0399-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0399-y

Keywords

Navigation