Skip to main content
Log in

Electrostatic droplets assisted synthesis of alginate microcapsules

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

This paper demonstrates a proof-of-concept approach for encapsulating the insulin and Fe3O4 nanoparticles into size-controllable alginate microcapsules utilizing the electrostatic droplets (ESD) technique. We have established that the combination of ESD and external gelation is quite effective in producing uniform-sized polymer particles. In addition, using the external gelation technique, the droplets containing a sodium-alginate were gelled in situ by immersion in Ca2+, Ba2+, or Cu2+ ions for a few minutes. The results show that different-type divalent cations caused various surface features to appear on the microcapsules (e.g., cracking, orange peel, pitting, splitting, wrinkling, etc.). The particle size can be adjusted from a few micrometers to ca. 1,000 μm by electrostatic force. The microcapsules can be made magnetic by incorporating a super-paramagnetic nanomaterial (e.g., Fe3O4 nanoparticles) during the preparation. The composite magnetic microcapsules are potential candidates for a magnetic-responsive drug delivery system. In addition, our results show that the encapsulation and in vitro release of a model drug, insulin, can enhance the effect of the controlled release. These microcapsules are addressable by an external magnetic field and are capable of loading a model drug and releasing it in a highly differential drug release profile. We have demonstrated that the appropriate magnetic field intensity for different release patterns is predictable, which enables a better application of microcapsules as a smart drug carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gombotz WR, Wee SF. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.

    Article  PubMed  CAS  Google Scholar 

  2. Kikuchi A, Okano T. Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev. 2002;54:53–77.

    Article  PubMed  CAS  Google Scholar 

  3. You JO, Park SB, Park HY, Haam S, Chung CH, Kim WS. Preparation of regular sized Ca-alginate microspheres using membrane emulsification method. J Microencapsul. 2001;18:521–32.

    Article  PubMed  CAS  Google Scholar 

  4. Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, et al. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials. 2005;26:3327–31.

    Article  PubMed  CAS  Google Scholar 

  5. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73.

    Article  PubMed  CAS  Google Scholar 

  6. Teh SY, Lin R, Hung LH, Lee AP. Droplet microfluidics. Lab Chip. 2008;8:198–220.

    Article  PubMed  CAS  Google Scholar 

  7. Lin YH, Lee CH, Lee GB. Droplet formation utilizing controllable moving-wall structures for double-emulsion application. J Microelectromech Syst. 2008;17:573–81.

    Article  Google Scholar 

  8. Huang KS, Liu MK, Wu CH, Yen YT, Lin YC. Calcium alginate microcapsules generation on a microfluidic system fabricated using the optical disc process. J Micromech Microeng. 2007;17:1428–34.

    Article  CAS  Google Scholar 

  9. Huang KS, Lai TH, Lin YC. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip. 2006;6:954–7.

    Article  PubMed  CAS  Google Scholar 

  10. Yang CH, Lin YS, Huang KS, Huang YC, Wang EC, Jhong JY, et al. Microfluidic emulsification and sorting assisted preparation of monodisperse chitosan microparticles. Lab Chip. 2009;9:145–50.

    Article  PubMed  CAS  Google Scholar 

  11. Yang CH, Huang KS, Lin YS, Lu K, Tzeng CC, Wang EC, et al. Microfluidic assisted synthesis of multi-functional polycaprolactone microspheres: Incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles, and tamoxifen. Lab Chip. 2009;9:961–5.

    Article  PubMed  CAS  Google Scholar 

  12. Huang KS, Lu K, Yeh CS, Chung SR, Lin CH, Yang CH, et al. Microfluidic controlling monodisperse microdroplet for 5-FU loaded genipin-gelatin microcapsules. J Control Release. 2009;137:15–9.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor GI. Electrically driven jets. Proc Natl Acad Sci. 1969;A313:453–75.

    Google Scholar 

  14. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

    Article  PubMed  CAS  Google Scholar 

  15. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Gañán-Calvo AM. Micro/nano encapsulation via electrified coaxial liquid jets. Science. 2002;295:1695–8.

    Article  PubMed  CAS  Google Scholar 

  16. Bhattarai N, Li Z, Edmondson D, Zhang M. Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater. 2006;18:1463–7.

    Article  CAS  Google Scholar 

  17. Dai Y, Cobley CM, Zeng J, Sun Y, Xia Y. Synthesis of anatase TiO2 nanocrystals with exposed 001 facets. Nano Lett. 2009;9:2455–9.

    Article  PubMed  CAS  Google Scholar 

  18. Susana M, Bruno S, Eliana BS, Domingos CF. Insulin-loaded alginate microspheres for oral delivery–effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr Polym. 2007;69:725–31.

    Article  Google Scholar 

  19. Tiefenauer LX. Chapter 29: magnetic nanoparticles as contrast agents for medical diagnosis. Nanotechnology in biology and medicine: methods, devices, and applications. Tuan Vo-Dinh. Boca Raton: Taylor and Francis; 2007. p. 1–20.

    Google Scholar 

  20. Kikuchi A, Kawabuchi M, Watanabe A, Sugihara M, Sakurai Y, Okano T. Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights. J Control Release. 1999;58:21–8.

    Article  PubMed  CAS  Google Scholar 

  21. Liu X, Chen DW, Xie LP, Zhang RQ. Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beads-entrapped liposome. J Control Release. 2003;93:293–300.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the National Science Council of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keng-Shiang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, KS., Yang, CH., Lin, YS. et al. Electrostatic droplets assisted synthesis of alginate microcapsules. Drug Deliv. and Transl. Res. 1, 289–298 (2011). https://doi.org/10.1007/s13346-011-0020-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0020-8

Keywords

Navigation