Skip to main content
Log in

Modulation of gene expression in CD4+ T lymphocytes following in vitro HIV infection: a comparison between human and chimpanzee

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Chimpanzees are susceptible to experimental infection by human deficiency virus (HIV)-1, but unlike humans, they exceptionally develop an immunodeficiency syndrome after HIV-1 inoculation. To explore the difference between human and chimpanzee, we analyzed the expression of 1547 genes of various functions in human or chimpanzee CD4+ lymphoblasts inoculated in vitro with HIV-1. We observed that, 1 day after HIV inoculation, fifty-eight genes were up-regulated in lymphoblasts of the three humans while their expression remained unchanged in lymphoblasts of the three chimpanzees. One gene is involved in adhesion of HIV (catenin-alpha), three in the immune response (semaphorin 4D, placental growth factor, IL-6), three in apoptosis (deleted in colorectal carcinoma, caspase 9 and FOXO1A). No difference between species was revealed for the expression of 373 genes related to glycosylation pathways. The in vitro human/chimpanzee comparison reveals new candidate genes up-regulated after inoculation with HIV-1 only in human lymphoblasts and which could be related to the higher sensitivity of human to HIV-induced AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adachi M, Hayami M, Kashiwagi N, Mizuta T, Ohta Y, Gill MJ, et al. Expression of Ley antigen in human immunodeficiency virus-infected human T cell lines and in peripheral lymphocytes of patients with acquired immune deficiency syndrome (AIDS) and AIDS-related complex (ARC). J Exp Med. 1988;167:323–31.

    Article  CAS  PubMed  Google Scholar 

  2. Arendrup M, Hansen JE, Clausen H, Nielsen C, Mathiesen LR, Nielsen JO. Antibody to histo-blood group A antigen neutralizes HIV produced by lymphocytes from blood group A donors but not from blood group B or O donors. Aids. 1991;5:441–4.

    Article  CAS  PubMed  Google Scholar 

  3. Audige A, Urosevic M, Schlaepfer E, Walker R, Powell D, Hallenberger S, et al. Anti-HIV state but not apoptosis depends on IFN signature in CD4+ T cells. J Immunol. 2006;177:6227–37.

    Article  CAS  PubMed  Google Scholar 

  4. Balzarini J. The alpha(1,2)-mannosidase I inhibitor 1-deoxymannojirimycin potentiates the antiviral activity of carbohydrate-binding agents against wild-type and mutant HIV-1 strains containing glycan deletions in gp120. FEBS Lett. 2007;581:2060–4.

    Article  CAS  PubMed  Google Scholar 

  5. Botarelli P, Houlden BA, Haigwood NL, Servis C, Montagna D, Abrignani S. N-glycosylation of HIV-gp120 may constrain recognition by T lymphocytes. J Immunol. 1991;147:3128–32.

    CAS  PubMed  Google Scholar 

  6. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008;319:921–6.

    Article  CAS  PubMed  Google Scholar 

  7. Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE, Cavrois M, Huang Y, Mahley RW, Dolan MJ, McCune JM, Ahuja SK. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci U S A. 2008;105:8718–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog. 2009;5:e1000437.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Forcet C, Ye X, Granger L, Corset V, Shin H, Bredesen DE, et al. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc Natl Acad Sci U S A. 2001;98:3416–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:436–41.

    Article  CAS  PubMed  Google Scholar 

  11. Gougeon ML, Lecoeur H, Boudet F, Ledru E, Marzabal S, Boullier S, et al. Lack of chronic immune activation in HIV-infected chimpanzees correlates with the resistance of T cells to Fas/Apo-1 (CD95)-induced apoptosis and preservation of a T helper 1 phenotype. J Immunol. 1997;158:2964–76.

    CAS  PubMed  Google Scholar 

  12. Heeney J, Jonker R, Koornstra W, Dubbes R, Niphuis H, Di Rienzo AM, et al. The resistance of HIV-infected chimpanzees to progression to AIDS correlates with absence of HIV-related T-cell dysfunction. J Med Primatol. 1993;22:194–200.

    CAS  PubMed  Google Scholar 

  13. Hiraiwa N, Hiraiwa M, Kannagi R. Human T-cell leukemia virus-1 encoded Tax protein transactivates alpha 1→3 fucosyltransferase Fuc-T VII, which synthesizes sialyl Lewis X, a selectin ligand expressed on adult T-cell leukemia cells. Biochem Biophys Res Commun. 1997;231:183–6.

    Article  CAS  PubMed  Google Scholar 

  14. Hodara VL, Parodi LM, Chavez D, Smith LM, Lanford R, Giavedoni LD. Characterization of γδT cells in naïve and HIV-infected chimpanzees and their responses to T-cell activators in vitro. J Med Primatol. 2014;43:258–71.

    Article  CAS  PubMed  Google Scholar 

  15. Hu H, Shioda T, Moriya C, Xin X, Hasan MK, Miyake K, et al. Infectivities of human and other primate lentiviruses are activated by desialylation of the virion surface. J Virol. 1996;70:7462–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology. 2009;6:5.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS, Wilson ML, et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature. 2009;460:515–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kestens L, Vingerhoets J, Peeters M, Vanham G, Vereecken C, Penne G, et al. Phenotypic and functional parameters of cellular immunity in a chimpanzee with a naturally acquired simian immunodeficiency virus infection. J Infect Dis. 1995;172:957–63.

    Article  CAS  PubMed  Google Scholar 

  19. Kim N, Dabrowska A, Jenner RG, Aldovini A. Human and simian immunodeficiency virus-mediated upregulation of the apoptotic factor TRAIL occurs in antigen-presenting cells from AIDS-susceptible but not from AIDS-resistant species. J Virol. 2007;81:7584–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kim JT, Kim EM, Lee KH, Choi JE, Jhun BH, Kim JW. Leucine zipper domain of HIV-1 gp41 interacted specifically with alpha-catenin. Biochem Biophys Res Commun. 2002;291:1239–44.

    Article  CAS  PubMed  Google Scholar 

  21. Kumanogoh A, Kikutani H. Immune semaphorins: a new area of semaphorin research. J Cell Sci. 2003;116:3463–70.

    Article  CAS  PubMed  Google Scholar 

  22. Lucque MC, Santos CC, Mairena EC, Wilkinson P, Boucher G, Segurado AC, Fonseca LA, Sabino E, Kalil JE, Cunha-Neto E. Gene expression profile in long-term non progressor HIV infected patients: in search of potential resistance factors. Mol Immunol. 2014;62:63–70.

    Article  Google Scholar 

  23. Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem. 2002;277:47928–37.

    Article  CAS  PubMed  Google Scholar 

  24. Ondoa P, Davis D, Kestens L, Vereecken C, Garcia Ribas S, Fransen K, et al. In vitro susceptibility to infection with SIVcpz and HIV-1 is lower in chimpanzee than in human peripheral blood mononuclear cells. J Med Virol. 2002;67:301–11.

    Article  CAS  PubMed  Google Scholar 

  25. O’Neil SP, Novembre FJ, Hill AB, Suwyn C, Hart CE, Evans-Strickfaden T, et al. Progressive infection in a subset of HIV-1-positive chimpanzees. J Infect Dis. 2000;182:1051–62.

    Article  PubMed  Google Scholar 

  26. Pandrea I, Apetrei C, Gordon S, Barbercheck J, Dufour J, Bohm R, et al. Paucity of CD4+CCR5+ T cells is a typical feature of natural SIV hosts. Blood. 2007;109:1069–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Peeters M, Janssens W, Vanden Haesevelde M, Fransen K, Willems B, Heyndrickx L, et al. Virologic and serologic characteristics of a natural chimpanzee lentivirus infection. Virology. 1995;211:312–5.

    Article  CAS  PubMed  Google Scholar 

  28. Pepe MG, Curtiss LK. Apolipoprotein E is a biologically active constituent of the normal immunoregulatory lipoprotein, LDL-In. J Immunol. 1986;136:3716–23.

    CAS  PubMed  Google Scholar 

  29. Pollakis G, Kang S, Kliphuis A, Chalaby MI, Goudsmit J, Paxton WA. N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization. J Biol Chem. 2001;276:13433–41.

    Article  CAS  PubMed  Google Scholar 

  30. Rotger M, Dalmau J, Rauch A, McLaren P, Bosinger SE, Martinez R, et al. Comparative transcriptomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus macaque. J Clin Invest. 2011;121:2391–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rutjens E, Balla-Jhagjhoorsingh S, Verschoor E, Bogers W, Koopman G, Heeney J. Lentivirus infections and mechanisms of disease resistance in chimpanzees. Front Biosci. 2003;8:d1134–45.

    Article  CAS  PubMed  Google Scholar 

  32. Schuitemaker H, Meyaard L, Kootstra NA, Dubbes R, Otto SA, Tersmette M, et al. Lack of T cell dysfunction and programmed cell death in human immunodeficiency virus type 1-infected chimpanzees correlates with absence of monocytotropic variants. J Infect Dis. 1993;168:1140–7.

    Article  CAS  PubMed  Google Scholar 

  33. Selvaraj SK, Giri RK, Perelman N, Johnson C, Malik P, Kalra VK. Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood. 2003;102:1515–24.

    Article  CAS  PubMed  Google Scholar 

  34. Silvestri G, Paiardini M, Pandrea I, Lederman MM, Sodora DL. Understanding the benign nature of SIV infection in natural hosts. J Clin Invest. 2007;117:3148–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Stevenson M, Zhang XH, Volsky DJ. Downregulation of cell surface molecules during noncytopathic infection of T cells with human immunodeficiency virus. J Virol. 1987;61:3741–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Tordjman R, Lepelletier Y, Lemarchandel V, Cambot M, Gaulard P, Hermine O, et al. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat Immunol. 2002;3:477–82.

    CAS  PubMed  Google Scholar 

  37. Trinite B, Chan CN, Lee CS, Mahajan S, Luo Y, Muesing MA, Folkvord JM, Pham M, Connick E, Levy DN. Suppression of Foxo1 activity and down-modulation of CD62L (L-selectin) in HIV-1 infected resting CD4 T cells. PLoS One. 2014;9(10):e110719.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Vahey MT, Nau ME, Jagodzinski LL, Yalley-Ogunro J, Taubman M, Michael NL, et al. Impact of viral infection on the gene expression profiles of proliferating normal human peripheral blood mononuclear cells infected with HIV type 1 RF. AIDS Res Hum Retrovir. 2002;18:179–92.

    Article  CAS  PubMed  Google Scholar 

  39. van ‘t Wout AB, Lehrman GK, Mikheeva SA, O’Keeffe GC, Katze MG, Bumgarner RE, et al. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines. J Virol. 2003;77:1392–402.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Viard JP, Burgard M, Hubert JB, Aaron L, Rabian C, Pertuiset N, et al. Impact of 5 years of maximally successful highly active antiretroviral therapy on CD4 cell count and HIV-1 DNA level. Aids. 2004;18:45–9.

    Article  PubMed  Google Scholar 

  41. Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol. 2007;15:211–8.

    Article  CAS  PubMed  Google Scholar 

  42. Wen W, Chen S, Cao Y, Zhu Y, Yamamoto Y. HIV-1 infection initiates changes in the expression of a wide array of genes in U937 promonocytes and HUT78 T cells. Virus Res. 2005;113:26–35.

    Article  CAS  PubMed  Google Scholar 

  43. Zaitseva M, Lee S, Lapham C, Taffs R, King L, Romantseva T, et al. Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency virus type 1 infection. Blood. 2000;96:3109–17.

    CAS  PubMed  Google Scholar 

  44. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, et al. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe. 2008;4:495–504.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministère Français de la Recherche (Contract EA3034) and Association de Recherche sur le SIDA (A.R.S., Toulouse, France). We thank Christine Bousquet and Christine Taureau for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Blancher.

Additional information

Pol-André Apoil and Arnaud Gleizes have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puissant-Lubrano, B., Apoil, PA., Gleizes, A. et al. Modulation of gene expression in CD4+ T lymphocytes following in vitro HIV infection: a comparison between human and chimpanzee. VirusDis. 26, 62–69 (2015). https://doi.org/10.1007/s13337-015-0252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-015-0252-1

Keywords

Navigation