Skip to main content
Log in

Kowalewski top and complex Lie algebras

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper identifies a natural Hamiltonian on a ten dimensional complex Lie algebra that unravels the mysteries encountered in Kowalewski’s famous paper on the motions of a rigid body around its fixed point under the influence of gravity. This system reveals that the enigmatic conditions of Kowalewski, namely, two principal moments of inertia equal to each other and twice the value of the remaining moment of inertia, and the centre of gravity in the plane spanned by the directions corresponding to the equal moments of inertia, are both necessary and sufficient for the existence of an isospectral representation \(\frac{dL(\lambda )}{dt}=[M(\lambda ),L(\lambda )]\) with a spectral parameter \(\lambda \). This representation then yields a crucial spectral invariant that naturally accounts for all the integrals of motion, known as Kowalewski type integrals in the literature of the top. This result is fundamentally dependent on a preliminary discovery that the equality of two principal moments of inertia and the placement of the centre of mass in the plane spanned by the corresponding directions is intimately tied to the existence of another integral of motion on whose zero level surface the above spectral representation resides. The link between mechanical tops and Hamiltonian systems on Lie algebras is provided by an earlier result in which it is shown that the equations of mechanical tops with a linear potential, (heavy tops, in particular) can be represented on certain coadjoint orbits in the semi-direct product \({\mathfrak {g}}={\mathfrak {p}}\rtimes {\mathfrak {k}}\) induced by a closed subgroup K of the underlying group G. The passage to complex Lie algebras is motivated by Kowalewski’s mysterious use of complex variables. It is shown that the complex variables in her paper are naturally identified with complex quaternions and the representation of \(\mathfrak {so}(4,{{\mathbb {C}}})\) as the product \(\mathfrak {sl}(2,{{\mathbb {C}}})\times \mathfrak {sl}(2,{{\mathbb {C}}})\). The paper also shows that all the equations of Kowalewski type can be solved by a uniform integration procedure over the Jacobian of a hyperelliptic curve, as in the original paper of Kowalewski.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability Statement

All data generated or analysed during this study are included in this article in its bibliography.

References

  1. Adler, M., van Moerbeke, P.: The Kowalewski and Hénon-Heiles motions as Manakov geodesic flows on \(SO(4)\)- a two dimensional family of Lax pairs. Commun. Math. Phys. 113(4), 659–700 (1988)

    Article  Google Scholar 

  2. Bolsinov, A.: A completeness criterion for a family of functions in involution obtained by the shift method. Soviet Math. Dokl. 38, 161–165 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Bobenko, A.I., Reyman, A.G., Semenov-Tian Shansky, M.A.: The Kowalewski top 99 years later; a Lax pair, generalizations and explicit solutions. Commun. Math. Phys. 122)(2, 321–354 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bogoyavlenski, O.: New integrable problem of classical mechanics. Commun. Math. Phys. 94, 255–269 (1984)

    Article  MathSciNet  Google Scholar 

  5. Dragović, V.: Geometrization and generalization of the Kowalevski top. Commun. Math. Phys. 298, 37–64 (2010)

    Article  MathSciNet  Google Scholar 

  6. Dragović, V., Kukić, K.: New Examples of Systems of the Kowalevski Type. Regul. Chaotic Dyn. 16(5), 484–495 (2011)

    Article  MathSciNet  Google Scholar 

  7. Dragović, V., Kukić, K.: Systems of Kowalevski type and Discriminantly separable polynomials. Regul. Chaotic Dyn. 19(2), 162–184 (2014)

    Article  MathSciNet  Google Scholar 

  8. Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: Integrable systems I, Dynamical Systems IV, Encyclopaedia of Math. Sci., vol 4. Springer-Verlag, pp. 174-271 (1980)

  9. Euler, L.: Evolutio generalior formularum comparationi curvarum inserventium. Opera Omnia, series 1, vol. 20, EN(347), pp 318–356 (1765)

  10. Fomenko, A.T., Trofimov, V.V.: Integrability in the sense of Liouville of Hamiltonian systems on Lie algebras, (in Russian) Uspekhi Mat. Nauk 2(236), 3–56 (1984)

    Google Scholar 

  11. Haine, L., Horozov, E.: A Lax pair for Kowalewski top. Phys. D 29(1–2), 173–180 (1987)

    Article  MathSciNet  Google Scholar 

  12. Horozov, E., van Moerbeke, P.: The full geometry of Kowalewskis top and (1,2)-abelian surfaces. Commun. Pure Appl. Math. 42(4), 357–407 (1989)

    Article  MathSciNet  Google Scholar 

  13. Ivanescu, C., Savu, A.: The Kowalewski top as a reduction of a Hamiltonian system on \(Sp (4,{\mathbb{R}})\). Proc. Am. Math. Soc. 131, 607–618 (2003)

    Article  Google Scholar 

  14. Jurdjevic, V.: Integrable Hamiltonian systems on lie groups: Kowalewski type. Ann. Math. 150, 605–644 (1999)

    Article  MathSciNet  Google Scholar 

  15. Jurdjevic, V.: Affine-quadratic problems on Lie groups: tops and integrable systems. J. Lie Theory 30(2), 425–444 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Jurdjevic, V.: Integrable Hamiltonian Systems on Complex Lie Groups. Memoirs of the American Mathematical Society, vol. 178, No. 838 (2005)

  17. Jurdjevic, V.: Optimal Control and Geometry: Integrable Systems, Cambridge Studies in Advanced Mathematics 154. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  18. Kirillov, A.A.: Lectures on the Orbit Method., Graduate Studies in Mathematics, p. 64. American Mathematical Society, Providence (2004)

    Google Scholar 

  19. Komarov, I.V., Tsiganov, A.V.: On a trajectory isomorphism of the Kowalevski gyrostat and the Clebsch problem. J. Phys. A Math. Gen. 38, 2917–2927 (2005)

    Article  MathSciNet  Google Scholar 

  20. Komarov, I.V., Tsiganov, A.V.: On integration of the Kowalevski gyrostat and the Clebsch problems. Regul. Chaotic Dyn. 9(2), 169–187 (2004)

    Article  MathSciNet  Google Scholar 

  21. Komarov, I.V., Kuznetsov, V.B.: Kowalewski top on the Lie algebras \(o(4), e(3)\) and \(o(3,1)\). J. Phys. A 23(6), 841–846 (1990)

    Article  MathSciNet  Google Scholar 

  22. Komarov, I.V.: Kowalewski top for the hydrogen atom. Theor. Math. Phys. 77(1), 67–72 (1981)

    Google Scholar 

  23. Tsiganov, A.V.: New variables of separation for particular case of the Kowalevski top. Regul. Chaotic Dyn. 15(6), 657–667 (2010)

    Article  MathSciNet  Google Scholar 

  24. Kowalewski, S.: Sur le problème de la rotation dun corps solide autor dun fixé. Acta Math. 12, 177–232 (1889)

    Article  MathSciNet  Google Scholar 

  25. Love, A.E.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York (1927)

    MATH  Google Scholar 

  26. Manakov, S.V.: Note on the integration of Eulers equations of the dynamics of an \(n\) dimensional rigid body. Funct. Anal. Appl. 10, 328–329 (1976)

    Article  Google Scholar 

  27. Marshall, I.D.: The Kowalevski top: its r-matrix interpretation and Bihamiltonian formulation. Commun. Math. Phys. 191, 723–734 (1989)

    Article  Google Scholar 

  28. Mischenko, A.S., Fomenko, A.T.: Euler equation on finite-dimensional Lie groups. Math USSR Izv. 12, 371–389 (1978)

    Article  Google Scholar 

  29. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Lax representation with a spectral parameter for the Kowalewski top and its generalizations. Lett. Math. Phys. 14, 55–62 (1987)

    Article  MathSciNet  Google Scholar 

  30. Sokolov, V.V.: A new integrable case for the Kirchhoff equation. Theoret. Math. Phys. 129(1), 1335–1340 (2001)

    Article  MathSciNet  Google Scholar 

  31. Weil, A.: Arithmetic and Geometry, Euler and the Jacobians of elliptic curves, Vol. I, Progress Math. 35. Birkhauser, Boston, pp. 353–359 (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jurdjevic.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurdjevic, V. Kowalewski top and complex Lie algebras. Anal.Math.Phys. 11, 173 (2021). https://doi.org/10.1007/s13324-021-00599-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00599-w

Keywords

Mathematics Subject Classification

Navigation