Skip to main content
Log in

Impact of Human SULT1E1 Polymorphisms on the Sulfation of 17β-Estradiol, 4-Hydroxytamoxifen, and Diethylstilbestrol by SULT1E1 Allozymes

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Previous studies have revealed that sulfation, as mediated by the estrogen-sulfating cytosolic sulfotransferase (SULT) SULT1E1, is involved in the metabolism of 17β-estradiol (E2), 4-hydroxytamoxifen (4OH-tamoxifen), and diethylstilbestrol in humans. It is an interesting question whether the genetic polymorphisms of SULT1E1, the gene that encodes the SULT1E1 enzyme, may impact on the metabolism of E2 and these two drug compounds through sulfation.

Methods

In this study, five missense coding single nucleotide polymorphisms of the SULT1E1 gene were selected to investigate the sulfating activity of the coded SULT1E1 allozymes toward E2, 4OH-tamoxifen, and diethylstilbestrol. Corresponding cDNAs were generated by site-directed mutagenesis, and recombinant SULT1E1 allozymes were bacterially expressed, affinity-purified, and characterized using enzymatic assays.

Results

Purified SULT1E1 allozymes were shown to display differential sulfating activities toward E2, 4OH-tamoxifen, and diethylstilbestrol. Kinetic analysis revealed further distinct Km (reflecting substrate affinity) and Vmax (reflecting catalytic activity) values of the five SULT1E1 allozymes with E2, 4OH-tamoxifen, and diethylstilbestrol as substrates.

Conclusions

Taken together, these findings highlighted the significant differences in E2-, as well as the drug-sulfating activities of SULT1E1 allozymes, which may have implications in the differential metabolism of E2, 4OH-tamoxifen, and diethylstilbestrol in individuals with different SULT1E1 genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med. 1998;339:1609–18. https://doi.org/10.1056/NEJM199811263392207.

    Article  CAS  PubMed  Google Scholar 

  2. Crewe HK, Ellis SW, Lennard MS, Tucker GT. Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol. 1997;53(2):171–8. https://doi.org/10.1016/s0006-2952(96)00650-8.

    Article  CAS  PubMed  Google Scholar 

  3. Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002;30(8):869–74. https://doi.org/10.1124/dmd.30.8.869.

    Article  CAS  PubMed  Google Scholar 

  4. Jordan VC, Collins MM, Rowsby L, Prestwich G. A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J Endocrinol. 1977;75(2):305–16. https://doi.org/10.1677/joe.0.0750305.

    Article  CAS  PubMed  Google Scholar 

  5. Chang M. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul). 2012;20(3):256–67. https://doi.org/10.4062/biomolther.2012.20.3.256.

    Article  CAS  Google Scholar 

  6. Iwase H, Yamamoto Y. Clinical benefit of sequential use of endocrine therapies for metastatic breast cancer. Int J Clin Oncol. 2015;20:253–61. https://doi.org/10.1007/s10147-015-0793-8.

    Article  CAS  PubMed  Google Scholar 

  7. Lonning PE, Taylor PD, Anker G, Iddon J, Wie L, Jorgensen LM, Mella O, Howell A. High-dose estrogen treatment in postmenopausal breast cancer patients heavily exposed to endocrine therapy. Breast Cancer Res Treat. 2001;67:111–6. https://doi.org/10.1023/a:1010619225209.

    Article  CAS  PubMed  Google Scholar 

  8. Mahtani RL, Stein A, Vogel CL. High-dose estrogen as salvage hormonal therapy for highly refractory metastatic breast cancer: a retrospective chart review. Clin Ther. 2009;31:2371–8. https://doi.org/10.1016/j.clinthera.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  9. de Voogt HJ, Smith PH, Pavone-Macaluso M, de Pauw M, Suciu S. Cardiovascular side effects of diethylstilbestrol, cyproterone acetate, medroxyprogesterone acetate and estramustine phosphate used for the treatment of advanced prostatic cancer: results from European Organization for Research on Treatment of Cancer trials 30761 and 30762. J Urol. 1986;135(2):303–7. https://doi.org/10.1016/s0022-5347(17)45620-5.

    Article  PubMed  Google Scholar 

  10. Fisher B, Costantino JP, Redmond CK, Fisher ER, Wickerham DL, Cronin WM. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst. 1994;86(7):527–37. https://doi.org/10.1093/jnci/86.7.527.

    Article  CAS  PubMed  Google Scholar 

  11. Latifyan S, Vansteelandt C, Lecomte S, Efira A. Tamoxifen induced thromboembolic events in breast cancer. Some possible mechanisms. Rev Med Brux. 2017;38(6):494–500.

    CAS  PubMed  Google Scholar 

  12. Manikandan R, Srirangam SJ, Pearson E, Brown SCW, O'Reilly P, Collins GN. Diethylstilboestrol versus bicalutamide in hormone refractory prostate carcinoma: a prospective randomized trial. Urol Int. 2005;75(3):217–21. https://doi.org/10.1159/000087797.

    Article  CAS  PubMed  Google Scholar 

  13. Nayfield SG, Gorin MB. Tamoxifen-associated eye disease. A review. J Clin Oncol. 1996;14(3):1018–26. https://doi.org/10.1200/JCO.1996.14.3.1018.

    Article  CAS  PubMed  Google Scholar 

  14. Salomao SR, Watanabe SE, Berezovsky A, Motono M. Multifocal electroretinography, color discrimination and ocular toxicity in tamoxifen use. Curr Eye Res. 2007;32(4):345–52. https://doi.org/10.1080/02713680701229638.

    Article  PubMed  Google Scholar 

  15. Smith DC, Redman BG, Flaherty LE, Li L, Strawderman M, Pienta KJ. A phase II trial of oral diethylstilbesterol as a second-line hormonal agent in advanced prostate cancer. Urology. 1998;52(2):257–60. https://doi.org/10.1016/s0090-4295(98)00173-3.

    Article  CAS  PubMed  Google Scholar 

  16. Falany JL, Pilloff DE, Leyh TS, Falany CN. Sulfation of raloxifene and 4-hydroxytamoxifen by human cytosolic sulfotransferases. Drug Metab Dispos. 2006;34(3):361–8. https://doi.org/10.1124/dmd.105.006551.

    Article  CAS  PubMed  Google Scholar 

  17. Nishiyama T, Ogura K, Nakano H, Ohnuma T, Kaku T, Hiratsuka A, Muro K, Watabe T. Reverse geometrical selectivity in glucuronidation and sulfation of cis- and trans-4-hydroxytamoxifens by human liver UDP-glucuronosyltransferases and sulfotransferases. Biochem Pharmacol. 2002;63(10):1817–30. https://doi.org/10.1016/s0006-2952(02)00994-2.

    Article  CAS  PubMed  Google Scholar 

  18. Suiko M, Sakakibara Y, Liu MC. Sulfation of environmental estrogen-like chemicals by human cytosolic sulfotransferases. Biochem Biophys Res Commun. 2000;267(1):80–4. https://doi.org/10.1006/bbrc.1999.1935.

    Article  CAS  PubMed  Google Scholar 

  19. Falany C, Roth JA. Properties of human cytosolic sulfotransferases involved in drug metabolism. In: Jeffery EH, editor. Human drug metabolism; from molecular biology to man. Boca Raton: CRC; 1993. p. 101–115.

    Google Scholar 

  20. Mulder GJ, Jakoby WB. Sulfation in conjugation reactions. In: Mulder GJ, Jakoby WB, editors. Drug metabolism. London: Taylor and Francis; 1990. p. 107–161.

    Google Scholar 

  21. Weinshilboum R, Otterness D. Sulfotransferase enzymes. In: Kaufmann FC, editor. Conjugation-deconjugation reactions in drug metabolism and toxicity. Berlin: Springer; 1994. p. 45–78.

    Chapter  Google Scholar 

  22. Blanchard RL, Freimuth RR, Buck J, Weinshilboum RM, Coughtrie MW. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics. 2004;14(3):199–21111. https://doi.org/10.1097/00008571-200403000-00009.

    Article  CAS  PubMed  Google Scholar 

  23. Freimuth RR, Wiepert M, Chute CG, Wieben ED, Weinshilboum RM. Human cytosolic sulfotransferase database mining: identification of seven novel genes and pseudogenes. Pharmacogenomics J. 2004;4(1):54–655. https://doi.org/10.1038/sj.tpj.6500223.

    Article  CAS  PubMed  Google Scholar 

  24. Falany CN, Krasnykh V, Falany JL. Bacterial expression and characterization of a cDNA for human liver estrogen sulfotransferase. J Steroid Biochem Mol Biol. 1995;52(6):529–39.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Varlamova O, Vargas FM, et al. Sulfuryl transfer: the catalytic mechanism of human estrogen sulfotransferase. J Biol Chem. 1998;273(18):10888–92.

    Article  CAS  PubMed  Google Scholar 

  26. Petrotchenko EV, Doerflein ME, Kakuta Y, et al. Substrate gating confers steroid specificity to estrogen sulfotransferase. J Biol Chem. 1999;274(42):30019–22.

    Article  CAS  PubMed  Google Scholar 

  27. Agarwal N, Alex AB, Farnham JM, Patel S, Gill D, Buckley TH, Stephenson RA, Cannon-Albright L. Inherited variants in SULT1E1 and response to abiraterone acetate by men with metastatic castration refractory prostate cancer. J Urol. 2016;196(4):1112–6. https://doi.org/10.1016/j.juro.2016.04.079.

    Article  CAS  PubMed  Google Scholar 

  28. Choi JY, Lee KM, Park SK, Noh DY, Ahn SH, Chung HW, Han W, Kim JS, Shin SG, Jang IJ, Yoo KY, Hirvonen A, Kang D. Genetic polymorphisms of SULT1A1 and SULT1E1 and the risk and survival of breast cancer. Cancer Epidemiol Biomark Prev. 2005;14(5):1090–5. https://doi.org/10.1158/1055-9965.EPI-04-0688.

    Article  CAS  Google Scholar 

  29. Cohen S, Laitman Y, Kaufman B, Milgrom R, Nir U, Friedman E. SULT1E1 and ID2 genes as candidates for inherited predisposition to breast and ovarian cancer in Jewish women. Fam Cancer. 2009;8(2):135–44. https://doi.org/10.1007/s10689-008-9218-4.

    Article  CAS  PubMed  Google Scholar 

  30. Daniels J, Kadlubar S. Sulfotransferase genetic variation: from cancer risk to treatment response. Drug Metab Rev. 2013;45(4):415–22. https://doi.org/10.3109/03602532.2013.835621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirata H, Hinoda Y, Okayama N, Suehiro Y, Kawamoto K, Kikuno N, Rabban JT, Chen LM, Dahiya R. CYP1A1, SULT1A1, and SULT1E1 polymorphisms are risk factors for endometrial cancer susceptibility. Cancer. 2008;112(9):1964–73. https://doi.org/10.1002/cncr.23392.

    Article  CAS  PubMed  Google Scholar 

  32. Rebbeck TR, Troxel AB, Wang Y, Walker AH, Panossian S, Gallagher S, Shatalova EG, Blanchard R, Bunin G, DeMichele A, Rubin SC, Baumgarten M, Berlin M, Schinnar R, Berlin JA, Strom BL. Estrogen sulfation genes, hormone replacement therapy, and endometrial cancer risk. J Natl Cancer Inst. 2006;98(18):1311–20. https://doi.org/10.1093/jnci/djj360.

    Article  CAS  PubMed  Google Scholar 

  33. Woo HI, Lee SK, Kim J, Kim SW, Yu J, Bae SY, Lee JE, Nam SJ, Lee SY. Variations in plasma concentrations of tamoxifen metabolites and the effects of genetic polymorphisms on tamoxifen metabolism in Korean patients with breast cancer. Oncotarget. 2017;8(59):100296–311. https://doi.org/10.18632/oncotarget.22220.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yanagisawa K, Sakakibara Y, Suiko M, Takami Y, Nakayama T, Nakajima H, Takayanagi K, Natori Y, Liu MC. cDNA cloning, expression, and characterization of the human bifunctional ATP sulfurylase/adenosine 5′-phosphosulfate kinase enzyme. Biosci Biotechnol Biochem. 1998;62(5):1037–40. https://doi.org/10.1271/bbb.62.1037.

    Article  CAS  PubMed  Google Scholar 

  35. Hui Y, Liu MC. Sulfation of ritodrine by the human cytosolic sulfotransferases (SULTs): Effects of SULT1A3 genetic polymorphism. Eur J Pharmacol. 2015;761:125–9. https://doi.org/10.1016/j.ejphar.2015.04.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dunbrack RL Jr. Rotamer libraries in the 21st century. Curr Opin Struct Biol. 2002;12(4):431–40. https://doi.org/10.1016/S0959-440X(02)00344-5.

    Article  CAS  PubMed  Google Scholar 

  37. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. https://doi.org/10.1002/jcc.20084.

    Article  CAS  PubMed  Google Scholar 

  38. Mansel R, Goyal A, Nestour EL, Masini-Eteve V, O'Connell K. Afimoxifene Breast Pain Research Group, A phase II trial of Afimoxifene (4-hydroxytamoxifen gel) for cyclical mastalgia in premenopausal women. Breast Cancer Res Treat. 2007;106(3):389–97. https://doi.org/10.1007/s10549-007-9507-x.

    Article  CAS  PubMed  Google Scholar 

  39. Turo R, Tan K, Thygesen H, Sundaram SK, Chahal R, Prescott S, Cross WR. Diethylstilboestrol (1 mg) in the management of castration-resistant prostate cancer. Urol Int. 2015;94(3):307–12. https://doi.org/10.1159/000365198.

    Article  CAS  PubMed  Google Scholar 

  40. Falany JL, Falany CN. Expression of cytosolic sulfotransferases in normal mammary epithelial cells and breast cancer cell lines. Cancer Res. 1996;56(7):1551–5.

    CAS  PubMed  Google Scholar 

  41. Nakamura Y, Suzuki T, Fukuda T, Ito A, Endo M, Moriya T, Arai Y, Sasano H. Steroid sulfatase and estrogen sulfotransferase in human prostate cancer. Prostate. 2006;66(9):1005–122. https://doi.org/10.1002/pros.20426.

    Article  CAS  PubMed  Google Scholar 

  42. Qian Y, Deng C, Song WC. Expression of estrogen sulfotransferase in MCF-7 cells by cDNA transfection suppresses the estrogen response: potential role of the enzyme in regulating estrogen-dependent growth of breast epithelial cells. J Pharmacol Exp Ther. 1998;286(1):555–60.

    CAS  PubMed  Google Scholar 

  43. Hui Y, Luo L, Zhang L, Kurogi K, Zhou C, Sakakibara Y, Suiko M, Liu MC. Sulfation of afimoxifene, endoxifen, raloxifene, and fulvestrant by the human cytosolic sulfotransferases (SULTs): a systematic analysis. J Pharmacol Sci. 2015;128(3):144–9. https://doi.org/10.1016/j.jphs.2015.06.004.

    Article  CAS  PubMed  Google Scholar 

  44. Areepium N, Panomvana D, Rungwanonchai P, Sathaporn S, Voravud N. Effects of CYP2D6 and UGT2B7 polymorphisms on pharmacokinetics of tamoxifen in Thai breast cancer patients. Breast Cancer (Dove Med Press). 2013;5:73–8. https://doi.org/10.2147/BCTT.S47172.

    Article  CAS  Google Scholar 

  45. de Vries Schultink AH, Zwart W, Linn SC, Beijnen JH, Huitema AD. Effects of pharmacogenetics on the pharmacokinetics and pharmacodynamics of tamoxifen. Clin Pharmacokinet. 2015;54(8):797–810. https://doi.org/10.1007/s40262-015-0273-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fernandez-Santander A, Gaibar M, Novillo A, Romero-Lorca A, Rubio M, Chicharro LM, Tejerina A, Bandres F. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients. PLoS ONE. 2013;8(7):e70183. https://doi.org/10.1371/journal.pone.0070183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gjerde J, Hauglid M, Breilid H, Lundgren S, Varhaug JE, Kisanga ER, Mellgren G, Steen VM, Lien EA. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol. 2008;19(1):56–61. https://doi.org/10.1093/annonc/mdm434.

    Article  CAS  PubMed  Google Scholar 

  48. Lim JS, Chen XA, Singh O, Yap YS, Ng RC, Wong NS, Wong M, Lee EJ, Chowbay B. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol. 2011;71(5):737–50. https://doi.org/10.1111/j.1365-2125.2011.03905.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murdter TE, Schroth W, Bacchus-Gerybadze L, Winter S, Heinkele G, Simon W, Fasching PA, Fehm T, German Tamoxifen, and AI Clinician Group, Eichelbaum M, Schwab M, Brauch H. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther. 2011;89(5):708–17. https://doi.org/10.1038/clpt.2011.27.

    Article  CAS  PubMed  Google Scholar 

  50. Zafra-Ceres M, de Haro T, Farez-Vidal E, Blancas I, Bandres F, de Duenas EM, Ochoa-Aranda E, Gomez-Capilla JA, Gomez-Llorente C. Influence of CYP2D6 polymorphisms on serum levels of tamoxifen metabolites in Spanish women with breast cancer. Int J Med Sci. 2013;10(7):932–7. https://doi.org/10.7150/ijms.5708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adjei AA, Thomae BA, Prondzinski JL, Eckloff BW, Wieben ED, Weinshilboum RM. Human estrogen sulfotransferase (SULT1E1) pharmacogenomics: gene resequencing and functional genomics. Br J Pharmacol. 2003;139(8):1373–82. https://doi.org/10.1038/sj.bjp.0705369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pedersen LC, Petrotchenko E, Shevtsov S, Negishi M. Crystal structure of the human estrogen sulfotransferase-PAPS complex: evidence for catalytic role of Ser137 in the sulfuryl transfer reaction. J Biol Chem. 2002;277(20):17928–32. https://doi.org/10.1074/jbc.M111651200.

    Article  CAS  PubMed  Google Scholar 

  53. Shevtsov S, Petrotchenko EV, Pedersen LC, Negishi M. Crystallographic analysis of a hydroxylated polychlorinated biphenyl (OH-PCB) bound to the catalytic estrogen binding site of human estrogen sulfotransferase. Environ Health Perspect. 2003;111(7):884–8. https://doi.org/10.1289/ehp.6056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thomas MP, Potter BV. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol. 2013;137:27–49. https://doi.org/10.1016/j.jsbmb.2012.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC. Crystal structure of estrogen sulphotransferase. Nat Struct Biol. 1997;4(11):904–8. https://doi.org/10.1038/nsb1197-904.

    Article  CAS  PubMed  Google Scholar 

  56. Petrotchenko EV, Pedersen LC, Borchers CH, Tomer KB, Negishi M. The dimerization motif of cytosolic sulfotransferases. FEBS Lett. 2001;490:39–433. https://doi.org/10.1016/s0014-5793(01)02129-9.

    Article  CAS  PubMed  Google Scholar 

  57. Cook I, Wang T, Almo SC, Kim J, Falany CN, Leyh TS. The gate that governs sulfotransferase selectivity. Biochemistry. 2012;52(2):415–24. https://doi.org/10.1021/bi301492j.

    Article  CAS  PubMed  Google Scholar 

  58. Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet. 2015;30(1):3–20. https://doi.org/10.1016/j.dmpk.2014.10.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Cheh Liu.

Ethics declarations

Funding

This work was supported in part by a grant from National Institutes of Health (Grant # R03HD071146).

Conflicts of Interest

The authors (A.E., F. A., M.A., A.B., M.R., K.K., and M.L.) declare no conflicts of interest.

Ethics Approval

N/A.

Availability of Data and Material

Data and materials will be made available upon request.

Code Availability

N/A.

Consent to Participate

N/A.

Consent for Publication

All authors have consented to the publication of this manuscript. No permissions from other parties are required.

Author Contributions

AE, FA, MA, AB, and MR performed experiments (cDNA cloning, recombinant protein expression/purification, and enzymatic characterization) and analyzed data. AE, KK, and ML analyzed data and wrote the manuscript. ML devised the project.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Daibani, A.A., Alherz, F.A., Abunnaja, M.S. et al. Impact of Human SULT1E1 Polymorphisms on the Sulfation of 17β-Estradiol, 4-Hydroxytamoxifen, and Diethylstilbestrol by SULT1E1 Allozymes. Eur J Drug Metab Pharmacokinet 46, 105–118 (2021). https://doi.org/10.1007/s13318-020-00653-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-020-00653-1

Navigation