Skip to main content
Log in

Inactivation of β-Lapachone Cytotoxicity by Filamentous Fungi that Mimic the Human Blood Metabolism

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

β-Lapachone is a drug candidate in phase II clinical trials for treatment of solid tumors. The therapeutic efficacy of β-lapachone is closely related to its metabolism, since this o-naphthoquinone produces cytotoxic effect after intracellular bioreduction by reactive oxygen species formation. The aim of this study was to produce β-lapachone human blood phase I metabolites to evaluate their cytotoxic activities.

Methods

The biotransformation of β-lapachone was performed using Mucor rouxii NRRL 1894 and Papulaspora immersa SS13. The metabolites were isolated and their chemical structures determined from spectrometric and spectroscopic data. Cell cytotoxicity assays were carried out with β-lapachone and its metabolites using the neoplastic cell line SKBR-3 derived from human breast cancer and normal human fibroblast cell line GM07492-A.

Results

Microbial transformation of β-lapachone by filamentous fungi resulted in the production of five metabolites identical to those found during human blood metabolism, a novel metabolite and a product stated before only in a synthetic procedure. The analysis of the results showed that β-lapachone metabolites were not cytotoxic for the neoplastic cell line SKBR-3 derived from human breast cancer and the normal human fibroblast cell line GM07492-A. The cytotoxic activity assay against the neoplastic cell line SKBR-3 revealed that the lowest half-maximal inhibitory concentration (IC50) values of these β-lapachone metabolites were 33- to 52-fold greater than IC50 values of β-lapachone.

Conclusions

The cytotoxic activity of β-lapachone in vivo may be reduced due to its swift conversion in blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Silva MN, Ferreira VF, Souza MCBV. An overview of the chemistry and pharmacology of naphthoquinones with emphasis on β-lapachone and derivatives. Quim Nova. 2003;26:407–16.

    Article  Google Scholar 

  2. Grose SO, Olmstead RG. Taxonomic revisions in the polyphyletic genus Tabebuia s. l. (Bignoniaceae). Syst Botany. 2007;32:660–70.

    Article  Google Scholar 

  3. Siegel D, Yan C, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol. 2012;83:1033–40.

    Article  CAS  PubMed  Google Scholar 

  4. Pardee AB, Li CJ, Li Y. Methods and composition for the treatment of cancer. United States Patent 2003, No. US 6,664,288 B1.

  5. Jiang Z, Reddy D, Ackerman SK, Salvesen J. Novel lapachone compounds and methods of use thereof. United States Patent 2004, No. US 2004/0266857 A1.

  6. Li C, Li Y. Methods of treating cancers using β-lapachone or analogs or derivatives thereof. United States Patent 2008, No. US 7,361,691 B2.

  7. Hwang JH, Kim DW, Jo EJ, Kim YK, Jo YS, Park JH, Yoo SK, Park MK, Kwak TH, Kho YL, Han J, Choi H-S, Lee S-H, Kim JM, Lee I, Kyung T, Jang C, Chung J, Kweon GR, Shong M. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes. 2009;58:965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim S-Y, Jeoung NH, Oh CJ, Choi Y-K, Lee H-J, Kim H-J, Kim J-Y, Hwang JH, Tadi S, Yim Y-H, Lee K-U, Park K-G, Huh S, Min K-N, Jeong K-H, Park MG, Kwak TH, Kweon GR, Inukai K, Shong M, Lee I-K. Activation of NAD(P)H: quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation. Circ Res. 2009;104:842–50.

    Article  CAS  PubMed  Google Scholar 

  9. Shin S, Park J, Li Y, Min KN, Kong G, Hur GM, Kim JM, Shong M, Jung M-S, Park JK, Jeong K-H, Park MG, Kwak TH, Brazil DP, Park J. β-Lapachone alleviates alcoholic fatty liver disease in rats. Cell Signal. 2014;26:295–305.

    Article  CAS  PubMed  Google Scholar 

  10. Bourguignon SC, Cavalcanti DFB, Souza AMT, Castro HC, Rodrigues CR, Albuquerque MG, Santos DO, Silva GG, Silva FC, Ferreira VF, Pinho RT, Alves CR. Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity. Exp Parasitol. 2011;127:160–6.

    Article  CAS  PubMed  Google Scholar 

  11. Silva Júnior EN, Guimarães TT, Menna-Barreto RFS, Pinto MCFR, Simone CA, Pessoa C, Cavalcanti BC, Sabino JR, Andrade CKZ, Goulart MOF, Castro SL, Pinto AV. The evaluation of quinonoid compounds against Trypanosoma cruzi: Synthesis of imidazolic anthraquinones, nor-β-lapachone derivatives and β-lapachone-based 1,2,3-triazoles. Bioorg Med Chem. 2010;18:3224–30.

    Article  Google Scholar 

  12. Coelho TS, Silva RSF, Pinto AV, Pinto MCFR, Scaini CJ, Moura KCG, Silva PA. Activity of β-lapachone derivatives against rifampicin susceptible and -resistant strains of Mycobacterium tuberculosis. Tuberculosis. 2010;90:293–7.

    Article  CAS  PubMed  Google Scholar 

  13. Andrade-Neto VF, Goulart MOF, Silva Filho JF, Silva MJ, Pinto MCFR, Pinto AV, Zalis MG, Carvalho LH, Krettlia AU. Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett. 2004;14:1145–9.

    Article  PubMed  Google Scholar 

  14. Niehues M, Barros VP, Emery FS, Dias-Baruffi M, Assis MD, Lopes NP. Biomimetic in vitro oxidation of lapachol: a model to predict and analyse the in vivo phase I metabolism of bioactive compounds. Eur J Med Chem. 2012;54:804–12.

    Article  CAS  PubMed  Google Scholar 

  15. Lee S, Kim IS, Kwak TH, Yoo HH. Comparative metabolism study of β-lapachone in mouse, rat, dog, monkey, and human liver microsomes using liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal. 2013;83:286–92.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng X, Liu F, Yan T, Zhou X, Wu L, Liao K, Wang G, Hao H. Metabolic profile, enzyme kinetics, and reaction phenotyping of β-lapachone metabolism in human liver and intestine in vitro. Mol Pharm. 2012;9:3476–85.

    Article  CAS  PubMed  Google Scholar 

  17. Miao X-S, Zhong C, Wang Y, Savage RE, Yang RY, Kizer D, Volckova E, Ashwell MA, Chan TCK. In vitro metabolism of β-lapachone (ARQ 501) in mammalian hepatocytes and cultured human cells. Rapid Commun Mass Spectrom. 2009;23:12–22.

    Article  CAS  PubMed  Google Scholar 

  18. Miao X-S, Song P, Savage RE, Zhong C, Yang R-Y, Kizer D, Wu H, Volckova R, Ashwell MA, Supko JG, He X, Chan TCK. Identification of the in vitro metabolites of 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione (ARQ 501; β-lapachone) in whole blood. Drug Metab Dispos. 2008;36:641–8.

    Article  CAS  PubMed  Google Scholar 

  19. Paludo CR, Silva-Junior EA, Santos RA, Pupo MT, Emery FS, Furtado NAJC. Microbial transformation of β-lapachone to its glycosides by Cunninghamella elegans ATCC 10028b. Phytochem Lett. 2013;6:657–61.

    Article  CAS  Google Scholar 

  20. Savage RE, Tyler AN, Miao X-S, Chan TCK. Identification of a novel glucosylsulfate conjugate as a metabolite of 3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione (ARQ 501, β-lapachone) in mammals. Drug Metab Dispos. 2008;36:753–8.

    Article  CAS  PubMed  Google Scholar 

  21. Fasinus P, Bouic PJ, Rosenkranz B. Liver-based in vitro technologies for drug biotransformations studies—a review. Curr Drug Metab. 2012;13:215–24.

    Article  Google Scholar 

  22. Murphy CD. Drug metabolism in microorganisms. Biotechnol Lett. 2015;37:19–28.

    Article  CAS  PubMed  Google Scholar 

  23. Silva EO, Furtado NAJC, Aleu J, Collado IG. Terpenoid biotransformations by Mucor species. Phytochem Rev. 2013;12:857–76.

    Article  CAS  Google Scholar 

  24. Capel CS, Souza ACD, Carvalho TC, Sousa JPB, Ambrósio SR, Martins CHG, Cunha WR, Galán RH, Furtado NAJC. Biotransformation using Mucor rouxii for the production of oleanolic acid derivatives and their antimicrobial activity against oral pathogens. J Ind Microbiol Biotechnol. 2011;38:1493–8.

    Article  CAS  PubMed  Google Scholar 

  25. Carvalho TC, Polizeli AM, Turatti ICC, Severiano ME, Carvalho CE, Ambrósio SR, Crotti AEM, Figueiredo US, Vieira PC, Furtado NAJC. Screening of filamentous fungi to identify biocatalysts for lupeol biotransformation. Molecules. 2010;15:6140–51.

    Article  PubMed  Google Scholar 

  26. Lacroix I, Biton J, Azerad R. Microbial models of drug metabolism: microbial transformations of Trimegestone® (RU27987), a 3-Keto-Δ4,9(10)-19-norsteroid drug. Bioorg Med Chem. 1999;7:2329–41.

    Article  CAS  PubMed  Google Scholar 

  27. Hilário VC, Carrão DB, Barth T, Borges KB, Furtado NAJC, Pupo MT, Oliveira ARM. Assessment of the stereoselective fungal biotransformation of albendazole and its analysis by HPLC in polar organic mode. J Pharm Biomed Anal. 2012;61:100–7.

    Article  PubMed  Google Scholar 

  28. Barth T, Aleu J, Pupo MT, Bonato PS, Collado IG. HPLC Analysis of Midodrine and Desglymidodrine in culture medium: evaluation of static and shaken conditions on the biotransformation by fungi. J Chromatogr Sci. 2013;51:460–7.

    Article  CAS  PubMed  Google Scholar 

  29. Hooker SC. The constitution of “lapachic acid” and its derivatives. J Chem Soc. 1892;61:611–50.

    Article  CAS  Google Scholar 

  30. Jackson M, Karwoswski JP, Humphrey PE, Kohl WL, Barlow GJ, Tanaka SK. Calbistrins, novel antifungal agents produced by Penicillium restrictum. J Antibiot. 1993;46:34–8.

    Article  CAS  PubMed  Google Scholar 

  31. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard CLSI document M38-A2. 2nd ed. Wayne: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  32. Silva Júnior EN, Simone CA, Souza ACC, Pinto CN, Guimarães TT, Pinto MCFR, Pinto AV. Unexpected transformation of quinones to spirolactones and to naturally occurring naphthalenic compounds. Tetrahedron Lett. 2009;50:1550–3.

    Article  Google Scholar 

  33. Yang R-Y, Kizer D, Wu H, Volckova R, Miao X-S, Ali SM, Tandon M, Savage RE, Chan TCK, Ashwell MA. Synthetic methods for the preparation of ARQ 501(β-lapachone) human blood metabolites. Bioorg Med Chem. 2008;16:5635–43.

    Article  CAS  PubMed  Google Scholar 

  34. Caldwell DR. Microbial physiology and metabolism. Dubuque: Wm. C. Brown Publishers; 1995.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of São Paulo, Brazil, for providing technical support to carry out the experiments and to Dayana Rubio Gouvea and José Carlos Tomaz (NPPNS-FCFRP/USP) for mass spectrometry analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niege Araçari Jacometti Cardoso Furtado.

Ethics declarations

Funding

“São Paulo Research Foundation” (FAPESP Grants 2011/21700-5, 2011/01303-1 and 2009/51812-0), “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) and “Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paludo, C.R., da Silva-Junior, E.A., de Oliveira Silva, E. et al. Inactivation of β-Lapachone Cytotoxicity by Filamentous Fungi that Mimic the Human Blood Metabolism. Eur J Drug Metab Pharmacokinet 42, 213–220 (2017). https://doi.org/10.1007/s13318-016-0337-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0337-2

Keywords

Navigation