Skip to main content
Log in

Contribution of rat intestinal metabolism to the xenobiotics clearance

  • Original Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Michaelis–Menten constants K m and V max values were determined by product formation and substrate depletion at several substrate concentrations of 4-methylumbelliferone using rat intestinal microsomes. K m and V max values determined by measuring product formation were in good agreement with substrate depletion approach. We also investigated hepatic and intestinal in vitro intrinsic clearance (CLint) in the liver and intestinal microsomes and compare with reports in the literature using nine test compounds, atorvastatin, 7-ethoxycoumarin, indomethacin, 4-methylumbelliferone, midazolam, nifedipine, testosterone, terfenadine and verapamil, in rats. CLint was determined from the substrate disappearance rate at 0.1 and 0.5 μM in the rat intestinal and liver microsomes, respectively. These results showed that both the liver and the intestine contributed to the metabolism of these compounds. The intestinal intrinsic clearance values of all these drugs, except for terfenadine in the rat intestinal microsomes, were lower than their hepatic intrinsic clearance per milligram protein, showing that there was an organ difference in metabolism between the liver and intestinal. These results make the evaluation using the intestinal more useful and provide a basis for predicting clearance using intestinal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EDTA:

Ethylenediaminetetraacetic acid

CLint :

Intrinsic clearance

NADPH:

β-Nicotinamide adenine dinucleotide phosphate

UPLC–MS/MS:

Ultraperformance liquid chromatography–tandem mass spectrometry

UGT:

UDP-glucuronosyltransferase

UDPGA:

Uridine diphosphate-glucuronic acid

References

  • Aiba T, Yoshinaga M, Ishida K, Takehara Y, Hashimoto Y (2005) Intestinal expression and metabolic activity of the CYP3A subfamily in female rats. Biol Pharm Bull 28:311–315

    Article  PubMed  CAS  Google Scholar 

  • Aoki M, Okudaira K, Haga M, Nishigaki R, Hayashi M (2010) Contribution of rat pulmonary metabolism to the elimination of lidocaine, midazolam, and nifedipine. Drug Metab Dispos 38:1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Argikar UA, Liang G, Bushee JL, Hosagrahara VP, Lee W (2011) Evaluation of pharmaceutical excipients as cosolvents in 4-methylumbelliferone glucuronidation in human liver microsomes: applications for compounds with low solubility. Drug Metab Pharmacokinet 26:102–106

    Article  PubMed  CAS  Google Scholar 

  • Arlotto MP, Trant JM, Estabrook RW (1991) Measurement of steroid hydroxylation reactions by high-performance liquid chromatography as indicator of P450 identity and function. Methods Enzymol 206:454–462

    Article  PubMed  CAS  Google Scholar 

  • Axelsson H, Granhall C, Floby E, Jaksch Y, Svedling M (2003) Rates of metabolism of chlorzoxazone, dextromethorphan, 7-ethoxycoumarin, imipramine, quinidine, testosterone and verapamil by fresh and cryopreserved rat liver slices, and some comparison with microsomes. Toxicol In Vitro 17:481–488

    Article  PubMed  CAS  Google Scholar 

  • Benet LZ, Cummins CL, Wu CY (2004) Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int J Pharm 277:3–9

    Article  PubMed  CAS  Google Scholar 

  • Bruyėre A, Declėves X, Bouzom F, Proust L, Martinet M, Walter B, Parmentier Y (2009) Development of an optimized procedure for the preparation of rat intestinal microsomes: comparison of hepatic and intestinal microsomal cytochrome P450 enzyme activities in two rat strains. Xenobiotica 39:22–32

    Article  PubMed  Google Scholar 

  • Carlile DJ, Stevens AJ, Ashforth EIL, Waghela D, Houston JB (1998) In vitro clearance of ethoxycoumarin and its prediction from in vitro system: use of drug depletion and metabolite formation methods in hepatic microsomes and isolated hepatocytes. Drug Metab Dispos 26:216–221

    PubMed  CAS  Google Scholar 

  • Coulson M, Gibson GG, Plant N, Hammond T, Graham M (2003) Lansoprazole increases testosterone metabolism and clearance in male Sprague-Dawley rats: implications for Leydig cell carcinogenesis. Toxicol Appl Pharmacol 192:154–163

    Article  PubMed  CAS  Google Scholar 

  • Cubitt HE, Houston JB, Galetin A (2009) Relative importance of intestinal and hepatic glucuronidation-impact on the prediction of drug clearance. Pharm Res 26:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Doherty MM, Charmann WN (2002) The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet 41:235–253

    Article  PubMed  CAS  Google Scholar 

  • Fisher MB, Campanale K, Ackermann BL, Vanden Branden M, Wrighton SA (2000) In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos 28:560–566

    PubMed  CAS  Google Scholar 

  • Grundy JS, Eliot LA, Foster RT (1997) Extrahepatic first-pass metabolism of nifedipine in the rat. Biopharm Drug Dispos 18:509–522

    Article  PubMed  CAS  Google Scholar 

  • Hall SD, Thummel KE, Watkins PB, Lown KS, Benet LZ, Paine MF, Mayo RR, Turgeon DK, Bailey DG, Fontana RJ et al (1999) Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos 27:161–166

    PubMed  CAS  Google Scholar 

  • Higashikawa F, Murakami T, Kaneda T, Kato A, Takano M (1999) Dose-dependent intestinal and hepatic first-pass metabolism of midazolam, a cytochrome P450 3A substrate with differently modulated enzyme activity in rats. J Pharm Pharmacol 51:67–72

    Article  PubMed  CAS  Google Scholar 

  • Houston JB, Carlile DJ (1998) Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices. Drug Metab Dispos 31:140–144

    Google Scholar 

  • Hu N, Xie S, Liu L, Wang X, Pan X, Chen G, Zhang L, Liu H, Liu X, Liu X, Xie L, Wang G (2011) Opposite effect of diabetes mellitus induced by streptozotocin on oral and intravenous pharmacokinetics of verapamil in rats. Drug Metab Dispos 39:419–425

    Article  PubMed  CAS  Google Scholar 

  • Iwao T, Inoue K, Hayashi Y, Yuasa H, Watanabe J (2002) Metabolic extraction of nifedipine during absorption from the rat small intestine. Drug Metab Pharmacokinet 17:546–553

    Article  PubMed  Google Scholar 

  • Jacobsen W, Kirchner G, Hallensleben K, Mancinelli L, Deters M, Hackbarth I, Baner K, Benet LZ, Sewing KF, Christians U (1999) Small intestinal metabolism of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin and comparison with pravastatin. J Pharmacol Exp Ther 291:131–139

    PubMed  CAS  Google Scholar 

  • Jurima-Romet M, Huang HS, Beck DJ, Li AP (1996) Evaluation of drug interactions in intact hepatocytes: inhibitors of terfenadine metabolism. Toxicol In Vitro 10:655–663

    Article  PubMed  CAS  Google Scholar 

  • Kaminsky LS, Zhang QY (2003) The small intestine a xenobiotic-metabolizing organ. Drug Metab Dispos 31:1520–1525

    Article  PubMed  CAS  Google Scholar 

  • Kotegawa T, Laurijssens BE, Von Moltke LL, Cotreau MM, Perloff MD, Venkatakrishnan K, Warrington JS, Granda BW, Harmatz JS, Greenblatt DJ (2002) In vitro, pharmacokinetic, and pharmacodynamic interactions of ketoconazole and midazolam in the rat. J Pharmacol Exp Ther 302:1228–1237

    Article  PubMed  CAS  Google Scholar 

  • Lau YY, Okochi H, Huang Y, Benet LZ (2006) Pharmacokinetics of atorvastatin and its hydroxyl metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effect from hepatic uptake transporters, and intestinal and hepatic metabolism. Drug Metab Dispos 34:1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Lindell M, Lang M, Lennernäs H (2003) Expression of genes encoding for drug metabolising cytochrome P450 enzymes and P-glycoprotein in the rat small intestine, comparison on the liver. Eur J Drug Metab Pharmacokinet 28:41–48

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Li P, Gallegos R, Vinita U, Xia CQ, Miwa GT, Balani SK, Gan LS (2006) Comparison of intrinsic clearance in liver microsomes and hepatocytes from rats and humans: evaluation of free fraction and uptake in hepatocytes. Drug Metab Dispos 34:1600–1605

    Article  PubMed  CAS  Google Scholar 

  • Martignoni M, Groothuis G, De Kanter R (2006) Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos 34:1047–1054

    PubMed  CAS  Google Scholar 

  • Mitschke D, Reichel A, Fricker G, Moenning U (2008) Characterization of cytochrome P450 protein expression along the entire length of the intestine of male and female rats. Drug Metab Dispos 36:1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Mulder GJ, Brouwer S, Weitering JG, Scholtens E, Pang KS (1985) Glucuronidation and sulfation in the rat in vivo: the role of the liver and the intestine in the in vivo clearance of 4-methylumbelliferone. Biochem Pharmacol 34:1326–1329

    Article  Google Scholar 

  • Nakajima M, Inoue T, Shimada N, Tokudome S, Yamamoto T, Kuroiwa Y (1998) Cytochrome P450 2C9 catalyses indomethacin O-demethylation in human liver microsomes. Drug Metab Dispos 26:261–266

    PubMed  CAS  Google Scholar 

  • Nath A, Atkins WM (2006) A theoretical validation of the substrate depletion approach to determining kinetic parameters. Drug Metab Dispos 34:1433–1435

    Article  PubMed  CAS  Google Scholar 

  • Nishimuta H, Sato K, Mizuki Y, Yabuki M, Komuro S (2010) Prediction of the intestinal first-pass metabolism of CYP3A substrates in humans using cynomolgus monkeys. Drug Metab Dispos 38:1967–1975

    Article  PubMed  CAS  Google Scholar 

  • Obach RS, Reed-Hagen AE (2002) Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos 30:831–837

    Article  PubMed  CAS  Google Scholar 

  • Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC (2006) The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 34:880–886

    Article  PubMed  CAS  Google Scholar 

  • Shiratani H, Katoh M, Nakajima M, Yokoi T (2008) Species differences in UDP-glucuronosyltransferase activities in mice and rats. Drug Metab Dispos 36:1745–1752

    Article  PubMed  CAS  Google Scholar 

  • Takemoto K, Yamazaki H, Tanaka Y, Nanakajima M, Yokoi T (2003) Catalytic activities of cytochrome P450 enzymes and UDP-glucuronosyltransferases involved in drug metabolism in rat everted sacs and intestinal microsomes. Xenobiotica 33:43–55

    Article  PubMed  CAS  Google Scholar 

  • Turncliff RZ, Hoffmaster KA, Kalvass JC, Pollack GM, Brouwer KLR (2006) Hepatobiliary disposition of a drug/metabolite pair: comprehensive pharmacokinetic modelling in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther 318:881–889

    Article  PubMed  CAS  Google Scholar 

  • Van de Kerkhof EG, De Graaf IA, Groothuis GM (2005) Characterisation of rat small intestinal and colon precision-cut slices as an in vitro system for drug metabolism and induction studies. Drug Metab Dispos 33:1613–1620

    Article  PubMed  Google Scholar 

  • Van de Kerkhof EG, De Graaf IA, Groothuis GM (2007) In vitro methods to study intestinal drug metabolism. Curr Drug Metab 8:658–675

    Article  PubMed  Google Scholar 

  • Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, Sugiyama Y (2010) Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38:215–222

    Article  PubMed  CAS  Google Scholar 

  • Zhang QY, Wikoff J, Dunbar D, Kaminsky L (1996) Characterization of rat small intestinal cytochrome P450 composition and inducibility. Drug Metab Dispos 24:322–328

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmud Kajbaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajbaf, M., Ricci, R., Zambon, S. et al. Contribution of rat intestinal metabolism to the xenobiotics clearance. Eur J Drug Metab Pharmacokinet 38, 33–41 (2013). https://doi.org/10.1007/s13318-012-0098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-012-0098-5

Keywords

Navigation