Skip to main content
Log in

Different effects of dihydropyridine calcium channel antagonists on CYP3A4 enzyme of human liver microsomes

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

The present study investigated inhibitory effects of 1,4-dihydropyridines (1,4-DHPs) calcium channel antagonists (1,4-DHP-CCAs) on cytochromeP450 3A4 (CYP3A4) of human liver microsomes and further explored importance of 1,4-DHPs molecular structural descriptors. Partial Least Squares method was applied to probe the quantitative relationships between the 1,4-DHPs molecular structural descriptors and its inhibitory actions, which demonstrated that different 1,4-DHP-CCAs could inhibit CYP3A4 enzyme’s activity differently. The K i values of nicardipine, lercandipine, cilnidipine, nitrendipine, lacidipine, nifedipine, felodipine were 10.13, 10.17, 11.44, 23.90, 29.34, 29.06 and 32.64 μmol L−1, respectively. It is suggested that the 1,4-DHPs molecular structural descriptors are the most important for its inhibitory effects based on the quantitative structure–activity relationship (QSAR) formula. The LogP was positively correlated to the K i, whereas molecular weight and molecule volume were negatively correlated. It is concluded that analysis of K i of 1,4-DHPs derivatives on the CYP3A4 activity may apply for the QSAR formula at the initial stage of clinical application of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Chen H (2006) Hepatic injury after using levoamlodipine besylate in combination with lovastatin and acipimox. Advers Drug React J 8(02):145

    Google Scholar 

  • Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH, Wrighton SA (1999a) Three- and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J Pharmacol Exp Ther 290(1):429–438

    PubMed  CAS  Google Scholar 

  • Ekins S, Bravi G, Wikel JH, Wrighton SA (1999b) Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther 291(1):424–433

    PubMed  CAS  Google Scholar 

  • Fayer JL, Petullo DM, Ring BJ, Wrighton SA, Ruterbories KJ (2001) A novel testosterone 6 beta-hydroxylase activity assay for the study of CYP3A-mediated metabolism, inhibition, and induction in vitro. J Pharmacol Toxicol Method 46(2):117–123

    Article  CAS  Google Scholar 

  • Guengerich FP, Bocker RH (1988) Cytochrome P-450-catalyzed dehydrogenation of 1,4-dihydropyridines. J Biol Chem 263(17):8168–8175

    PubMed  CAS  Google Scholar 

  • Guengerich FP, Brian WR, Iwasaki M, Sari MA, Baarnhielm C, Berntsson P (1991) Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 34(6):1838–1844

    Article  PubMed  CAS  Google Scholar 

  • Gibson GG, Skett P (eds) (1994) Introduction drug metabolism, 2nd edn. Blackie Academic & Professional, London

  • Hemmateenejad B, Akhond M, Miri R, Shamsipur M (2003) Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous). J Chem Inf Comput Sci 43(4):1328–1334

    Article  PubMed  CAS  Google Scholar 

  • Hemmateenejad B, Miri R, Akhond M, Shamsipur M (2002) Quantitative structure-activity relationship study of recently synthesized 1,4-dihydropyridine calcium channel antagonists. Application of the Hansch analysis method. Arch Pharm (Weinheim) 335(10):472–480

    Article  CAS  Google Scholar 

  • Hosseini M, Miri R, Amini M, Mirkhani H, Hemmateenejad B, Ghodsi S, Alipour E, Shafiee A (2007) Synthesis, QSAR and calcium channel antagonist activity of new 1,4-dihydropyridine derivatives containing 1-methyl-4, 5-dichloroimidazolyl substituents. Arch Pharm (Weinheim) 340(10):549–556

    Article  CAS  Google Scholar 

  • Iori F, da Fonseca R, Ramos MJ, Menziani MC (2005) Theoretical quantitative structure–activity relationships of flavone ligands interacting with cytochrome P450 1A1 and 1A2 isozymes. Bioorg Med Chem 13(14):4366–4374

    Article  PubMed  CAS  Google Scholar 

  • Kakkar T, Boxenbaum H, Mayersohn M (1999) Estimation of Ki in a competitive enzyme-inhibition model: comparisons among three methods of data analysis. Drug Metab Dispos 27(6):756–762

    PubMed  CAS  Google Scholar 

  • Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T (2000) Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug–drug interactions. Eur J Clin Pharmacol 55(11–12):843–852

    Article  PubMed  CAS  Google Scholar 

  • Kriegl JM, Eriksson L, Arnhold T, Beck B, Johansson E, Fox T (2005) Multivariate modeling of cytochrome P450 3A4 inhibition. Eur J Pharm Sci 24(5):451–463

    Article  PubMed  CAS  Google Scholar 

  • Lewis DF (2000) Structural characteristics of human P450s involved in drug metabolism: QSARs and lipophilicity profiles. Toxicology 144(1–3):197–203

    Article  PubMed  CAS  Google Scholar 

  • Lewis DF (2004) Quantitative structure-activity relationships (QSARs) for substrates of human cytochromes P450 CYP2 family enzymes. Toxicol In Vitro 18(1):89–97

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Yang K, Chen B (2004) Cholesterol in U937 foam cells assayed in liquid chromatographic-mass spectrometry. Chin J Mod Med 14(20):51–53 + 6

    Google Scholar 

  • Liu L, Wang W, Yao C (2010) China’s high blood pressure control guidelines (2009 grassroots version). Chin J Hypertens 18(01):11–30

    Google Scholar 

  • McCalmont WF, Patterson JR, Lindenmuth MA, Heady TN, Haverstick DM, Gray LS, Macdonald TL (2005) Investigation into the structure–activity relationship of novel concentration dependent, dual action T-type calcium channel agonists/antagonists. Bioorg Med Chem 13(11):3821–3839

    Article  PubMed  CAS  Google Scholar 

  • Meng Q, Liu X, Wang G (2004) Metabolic interaction of Cinildipine with some co-administrated drugs in human liver microsomes. J Chin Pharm Univ 35(06):4

    Google Scholar 

  • Muntwyler J, Follath F (2001) Calcium channel blockers in treatment of hypertension. Prog Cardiovasc Dis 44(3):207–216

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Ariyoshi N, Iwatsubo T, Fukunaga Y, Higuchi S, Itoh K, Shimada N, Nagashima K, Yokoi T, Yamamoto K, Horiuchi R, Kamataki T (2005) Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol Pharm Bull 28(5):882–885

    Article  PubMed  CAS  Google Scholar 

  • Neuvonen PJ, Suhonen R (1995) Itraconazole interacts with felodipine. J Am Acad Dermatol 33(1):134–135

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Shiraga T, Hashimoto T, Kagayama A (2004) Effect of nilvadipine, a dihydropyridine calcium antagonist, on cytochrome P450 activities in human hepatic microsomes. Biol Pharm Bull 27(3):415–417

    Article  PubMed  CAS  Google Scholar 

  • Siller-Matula JM, Lang I, Christ G, Jilma B (2008) Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J Am Coll Cardiol 52(19):1557–1563

    Article  PubMed  CAS  Google Scholar 

  • Staessen JA, Thijs L, Celis H, Gasowski J, Wang JG, Fagard RH (2001) Dihydropyridine calcium-channel blockers for antihypertensive treatment in older patients—evidence from the Systolic Hypertension in Europe Trial. S Afr Med J 91(12):1060–1068

    PubMed  CAS  Google Scholar 

  • Stresser DM, Blanchard AP, Turner SD, Erve JC, Dandeneau AA, Miller VP, Crespi CL (2000) Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab Dispos 28(12):1440–1448

    PubMed  CAS  Google Scholar 

  • Tang J, Amin Usmani K, Hodgson E, Rose RL (2004) In vitro metabolism of fipronil by human and rat cytochrome P450 and its interactions with testosterone and diazepam. Chem Biol Interact 147(3):319–329

    Article  PubMed  CAS  Google Scholar 

  • Triggle DJ (2007) Calcium channel antagonists: clinical uses—past, present and future. Biochem Pharmacol 74(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Yoon YJ, Kim KB, Kim H, Seo KA, Kim HS, Cha IJ, Kim EY, Liu KH, Shin JG (2007) Characterization of benidipine and its enantiomers’ metabolism by human liver cytochrome P450 enzymes. Drug Metab Dispos 35(9):1518–1524

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Project was supported by ChangZhou public health bureau guidance foundation project, Clinical Pharmacy Foundation of ChangZhou Siyao Pharmaceuticals Co., Ltd (cs20090902). The guidance from Professor YAO TongWei of College of Pharmaceutical Sciences, Zhejiang University is gratefully acknowledged by one of us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingli Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Z., Wang, M., Zou, S. et al. Different effects of dihydropyridine calcium channel antagonists on CYP3A4 enzyme of human liver microsomes. Eur J Drug Metab Pharmacokinet 37, 211–216 (2012). https://doi.org/10.1007/s13318-011-0076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-011-0076-3

Keywords

Navigation