Skip to main content
Log in

Functional analysis of BT4 of Arabidopsis thaliana in resistance against Botrytis cinerea

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Botrytis cinerea is a fungus with a necrotrophic lifestyle attacking over 200 crop hosts worldwide, resulting in significant economic losses. At present, the molecular and cellular mechanisms involved in plant resistance to B. cinerea and their genetic control are poorly understood. The Arabidopsis BT4 gene was previously isolated by DDRT-PCR under B. cinerea infection. However a role for BT4 in defense signaling has not been described to date. Compared with wild-type (wt) Col-0, the loss-of-function mutant of BT4 showed increased susceptibility to B. cinerea and enhanced expression of some defense-related genes such as PR1, SOD1, PPO, PAL, POD and CAT. However, expression of other defense-related genes such as NPR1, PR4 and PDF1.2 were repressed in the mutant compared with wt plants. In addition, transgenic lines overexpressing BT4 restored resistance to B. cinerea. Taken together, our results indicate that BT4 play an important role in Arabidopsis in resistance to B. cinerea perhaps by regulating the expression of defense-related genes in response to SA and JA signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bardwell VJ, Treisman R (1994) The POZ domain: a conserved protein interaction motif. Genes Dev 8:1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  PubMed  CAS  Google Scholar 

  • Boyle P, Le SE, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C (2009) The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21(11):3700–3713

    Article  PubMed  CAS  Google Scholar 

  • Chen GS, Zhou YF, Lin S, Zhang Z, Pan DR (2009) Isolation and characterization of IbNPR1 gene from sweet potato ipomoea batatas. Acta Agron Sin 35(12):2218–2224

    Article  CAS  Google Scholar 

  • Christians MJ, Gingerich DJ, Hansen M, Binder BM, Kieber JJ, Vierstra RD (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J 57(2):332–345

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Coegoa A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P (2005) An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell 17(7):2123–2137

    Article  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266(5188):1247–1250

    Article  PubMed  CAS  Google Scholar 

  • Du LQ, Poovaiah BW (2004) A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation: interaction with fsh/Ring3 class transcription activators. Plant Mol Biol 54(4):549–569

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Jyoti S, Pradeep K, Ashis N, Daniel FK (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25(5):563–574

    Article  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annual Rev Genet 24:447–463

    Article  CAS  Google Scholar 

  • Knepper C, Day B (2010) From perception to activation: the molecular-genetic and biochemical landscape of disease resistance signaling in plants. Arabidopsis Book. doi:10.1199/tab.0124

  • Koch E, Slusarenko AJ (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2(5):437–445

    PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146(3):839–844

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331

    Article  PubMed  CAS  Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SC, Ritsema T, Pieterse CM (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232(6):1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Kenichi T, Masanao S, Jerry DC, Fumiaki K, Jane G (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5(2):e1000301

    Article  Google Scholar 

  • Luo Y, Shang J, Zhao P, Xi D, Yuan S, Lin H (2011) Application of jasmonic acid followed by salicylic acid inhibits cucumber mosaic virus replication. Plant Pathol 27(1):53–58

    Article  CAS  Google Scholar 

  • Mandadi KK, Misra A, Ren S, McKnight TD (2009) BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiol 150(4):1930–1939

    Article  PubMed  CAS  Google Scholar 

  • Manners JM, Penninckx IAMA, Vermaere K, Kazan K, Brown RL, Morgan A, Maclean DJ, Curtis MD, Cammue BPA, Broekaert WF (1998) The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38(6):1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15(11):2551–2565

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10(12):2103–2113

    PubMed  CAS  Google Scholar 

  • Qu N, Gan WJ, Bi DL, Xia ST, Li X, Zhang YL (2010) Two BTB proteins function redundantly as negative regulators of defense against pathogens in Arabidopsis. Botany 88(11):953–960

    Article  CAS  Google Scholar 

  • Robert HS, Quint A, Brand D, Vivian-Smith A, Offringa R (2009) BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development. Plant J 58(1):109–121

    Article  PubMed  CAS  Google Scholar 

  • Shi HJ, Cui RZ, Hu BS, Wang XM, Zhang SP, Liu RX, Dong HS (2011) Overexpression of transcription factor AtMYB44 facilitates Botrytis infection in Arabidopsis. Physiol Mol Plant Pathol 76(2):90–95

    Article  CAS  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121(4):1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Veronese P, Chen X, Bluhm B, Salmeron J, Dietrich R, Mengiste T (2004) The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Plant J 40(4):558–574

    Article  PubMed  CAS  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8(5):561–580

    Article  PubMed  CAS  Google Scholar 

  • Xing JH, Weng QY, Dong JG (2006) Differential expression analysis of pathogensis-related genes in different Arabidopsis ecotypes to Botrytis cinerea. Acta Phytopathol Sin 36:562–565

    Google Scholar 

  • Zhang J, Zhou JM (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3(5):783–793

    Article  PubMed  CAS  Google Scholar 

  • Zhao JT, Huang X, Chen YP, Chen YF, Huang XL (2009) Molecular cloning and characterization of an ortholog of NPR1 gene from Dongguan Dajiao (Musa spp. ABB). Plant Mol Biol Rep 27(3):243–249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Sciences Foundation of China (No. 31200203), Research Fund for the Doctoral Program of Higher Education of China (NO.20121302120007) and Natural Science Foundation of Hebei Province, China (No. C2012204032). We thank Dr. Yiji Xia (Hong Kong Baptist University) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Hong Xing or Jin-Gao Dong.

Additional information

Cong-Cong Hao and Jiao Jia contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, CC., Jia, J., Chen, Z. et al. Functional analysis of BT4 of Arabidopsis thaliana in resistance against Botrytis cinerea . Australasian Plant Pathol. 42, 393–401 (2013). https://doi.org/10.1007/s13313-013-0202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-013-0202-6

Keywords

Navigation