Skip to main content
Log in

Modulation of AMPA receptor function by auxiliary subunits

  • Review article
  • Published:
e-Neuroforum

Abstract

AMPA receptors are ionotropic glutamate receptors that mediate the majority of fast excitatory transmission in the central nervous system. Their function depends not only on the composition of the subunits GluA1-4, but also on the interaction with auxiliary subunits. Several auxiliary subunits have been identified in proteomic analyses over the last years and we are beginning to understand the complex control of these proteins on physiological properties and membrane-transport of AMPA receptors. Auxiliary subunits such as TARPs, cornichons, and CKAMP44 influence receptor localization on the cell membrane, modulate receptor gating, and play a role for synaptic short-term and long-term plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boulter J et al (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249:1033–1037

    Article  CAS  PubMed  Google Scholar 

  2. Keinanen K et al (1990) A family of AMPA-selective glutamate receptors. Science 249:556–560

    Article  CAS  PubMed  Google Scholar 

  3. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA–gated glutamate receptor channels depends on subunit composition. Science 252:851–853

    Article  CAS  PubMed  Google Scholar 

  4. Lomeli H et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713

    Article  CAS  PubMed  Google Scholar 

  5. Mosbacher J et al (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266:1059–1062

    Article  CAS  PubMed  Google Scholar 

  6. Partin KM, Patneau DK, Mayer ML (1994) Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol Pharmacol 46:129–138

    CAS  PubMed  Google Scholar 

  7. Sekiguchi M et al (1997) A novel allosteric potentiator of AMPA receptors: 4–2-(phenylsulfonylamino)ethylthio–2,6-difluoro-phenoxyaceta mide. J Neurosci 17:5760–5771

    CAS  PubMed  Google Scholar 

  8. Sommer B et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585

    Article  CAS  PubMed  Google Scholar 

  9. Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198

    Article  CAS  PubMed  Google Scholar 

  10. Nakanishi N, Shneider NA, Axel R (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5:569–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252:1715–1718

    Article  CAS  PubMed  Google Scholar 

  12. Rosenthal JJC, Seeburg PH (2012) A-to-I RNA Editing: effects on proteins key to neural excitability. Neuron 74:432–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels—developmentally early and mature forms arise by alternative splicing. Neuron 6:799–810

    Article  CAS  PubMed  Google Scholar 

  14. Tomita S et al (2003) Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161:805–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS (2005) Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45:269–277

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Bao S, Qiao X, Thompson RF (1999) Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel gamma subunit. Proc Natl Acad Sci USA 96:12132–12137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hashimoto K et al (1999) Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J Neurosci 19:6027–6036

    CAS  PubMed  Google Scholar 

  18. Kang MG et al (2012) Proteomic analysis of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor complexes. J Biol Chem 287:28632–28645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schwenk J et al (2012) High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes. Neuron 74:621–633

    Article  CAS  PubMed  Google Scholar 

  20. Schwenk J et al (2009) Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323:1313–1319

    Article  CAS  PubMed  Google Scholar 

  21. Shanks NF et al (2012) Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1 L. Cell Rep 1:590–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. von Engelhardt J et al (2010) CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. Science 327:1518–1522

    Article  CAS  Google Scholar 

  23. Yan D, Tomita S (2012) Defined criteria for auxiliary subunits of glutamate receptors. J Physiol 590:21–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kalashnikova E et al (2010) SynDIG1: an activity-regulated, AMPA- receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65:80–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lovero KL, Blankenship SM, Shi Y, Nicoll RA (2013) SynDIG1 promotes excitatory synaptogenesis independent of AMPA receptor trafficking and biophysical regulation. PLoS One 8:e66171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Copits BA, Robbins JS, Frausto S, Swanson GT (2011) Synaptic targeting and functional modulation of GluK1 kainate receptors by the auxiliary neuropilin and tolloid-like (NETO) proteins. J Neurosci 31:7334–7340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ng D et al (2009) Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. PloS Biol 7:278–300

    CAS  Google Scholar 

  28. Straub C et al (2011) Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nat Neurosci 14:866-U883

    Article  CAS  Google Scholar 

  29. Straub C, Zhang W, Howe JR (2011) Neto2 modulation of kainate receptors with different subunit compositions. J Neuroscience 31:8078–8082

    Article  CAS  PubMed  Google Scholar 

  30. Tang M et al (2011) Neto1 is an auxiliary subunit of native synaptic kainate receptors. J Neurosci 31:10009–10018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang W et al (2009) A Transmembrane accessory subunit that modulates kainate-type glutamate receptors. Neuron 61:385–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schwenk J et al (2010) Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 465:231-U121

    Article  CAS  Google Scholar 

  33. Turecek R et al (2014) Auxiliary GABA(B) receptor subunits uncouple G protein beta gamma subunits from effector channels to induce desensitization. Neuron 82:1032–1044

    Article  CAS  PubMed  Google Scholar 

  34. Brockie PJ et al (2013) Cornichons control ER export of AMPA receptors to regulate synaptic excitability. Neuron 80:129–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Walker CS et al (2006) Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins. Proc Natl Acad Sci USA 103:10781–10786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Walker CS et al (2006) Conserved SOL-1 proteins regulate ionotropic glutamate receptor desensitization. Proc Natl Acad Sci USA 103:10787–10792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wang R et al (2012) The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors. Neuron 75:838–850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wang R et al (2008) Evolutionary conserved role for TARPs in the gating of glutamate receptors and tuning of synaptic function. Neuron 59:997–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zheng Y et al (2006) SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 glutamate receptors in Caenorhabditis elegans. Proc Natl Acad Sci USA 103:1100–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zheng Y, Mellem JE, Brockie PJ, Madsen DM, Maricq AV (2004) SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans. Nature 427:451–457

    Article  CAS  PubMed  Google Scholar 

  41. Boulin T et al (2012) Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit. Nat Neurosci 15:1374–1381

    Article  CAS  PubMed  Google Scholar 

  42. Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88:1407–1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Burgess DL, Gefrides LA,Foreman PJ, Noebels JL (2001) A cluster of three novel Ca2 + channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family. Genomics 71:339–350

    Article  CAS  PubMed  Google Scholar 

  44. Kato AS, Gill MB, Yu H, Nisenbaum ES, Bredt DS (2010) TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci 33:241–248

    Article  CAS  PubMed  Google Scholar 

  45. Kato AS, Siuda ER, Nisenbaum ES, Bredt DS (2008) AMPA receptor subunit-specific regulation by a distinct family of type II TARPs. Neuron 59:986–996

    Article  CAS  PubMed  Google Scholar 

  46. Kato AS et al (2007) New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors. J Neurosci 27:4969–4977

    Article  CAS  PubMed  Google Scholar 

  47. Klugbauer N et al (2000) A family of gamma-like calcium channel subunits. Febs Lett 470:189–197

    Article  CAS  PubMed  Google Scholar 

  48. Kim KS, Yan D, Tomita S (2010) Assembly and Stoichiometry of the AMPA Receptor and Transmembrane AMPA Receptor Regulatory Protein Complex. J Neurosci 30:1064–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Shi Y, Lu W, Milstein AD, Nicoll RA (2009) The stoichiometry of AMPA receptors and TARPs varies by neuronal cell type. Neuron 62:633–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Fukaya M, Yamazaki M, Sakimura K, Watanabe M (2005) Spatial diversity in gene expression for VDCCgamma subunit family in developing and adult mouse brains. Neurosci Res 53:376–383

    Article  CAS  PubMed  Google Scholar 

  51. Bokel C, Dass S, Wilsch-Brauninger M, Roth S (2006) Drosophila Cornichon acts as cargo receptor for ER export of the TGF alpha-like growth factor Gurken. Development 133:459–470

    Article  PubMed  CAS  Google Scholar 

  52. Castro CP, Piscopo D, Nakagawa T, Derynck R (2007) Cornichon regulates transport and secretion of TGF alpha-related proteins in metazoan cells. J Cell Sci 120:2454–2466

    Article  CAS  PubMed  Google Scholar 

  53. Hoshino H et al (2007) Cornichon-like protein facilitates secretion of HB-EGF and regulates proper development of cranial nerves. Mol Biol Cell 18:1143–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Powers J, Barlowe C (1998) Transport of axl2p depends on erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product. J Cell Biol 142:1209–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Powers J, Barlowe C (2002) Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles. Mol Biol Cell 13:880–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Harmel N et al (2012) AMPA receptors commandeer an ancient cargo exporter for use as an auxiliary subunit for signaling. PLoS One 7:e30681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Shi Y et al (2010) Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating. Proc Natl Acad Sci USA 107:16315–16319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Herring BE et al (2013) Cornichon proteins determine the subunit composition of synaptic AMPA receptors. Neuron 77:1083–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Boudkkazi S, Brechet A, Schwenk J, Fakler B (2014) Cornichon2 dictates the time course of excitatory transmission at individual hippocampal synapses. Neuron 82:848–858

    Article  CAS  PubMed  Google Scholar 

  60. Gill MB et al (2011) Cornichon-2 modulates AMPA receptor-transmembrane AMPA receptor regulatory protein assembly to dictate gating and pharmacology. J Neurosci 31:6928–6938

    Article  CAS  PubMed  Google Scholar 

  61. Kato AS et al (2010) Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron 68:1082–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Mauric V et al (2013) Ontogeny repeats the phylogenetic recruitment of the cargo exporter cornichon into AMPA receptor signaling complexes. Mol Cell Neurosci 56:10–17

    Article  CAS  PubMed  Google Scholar 

  63. Khodosevich K et al (2014) Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function. Neuron 83:601–615

    Article  CAS  PubMed  Google Scholar 

  64. Schwenk J et al (2014) Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain. Neuron 84:41–54

    Article  CAS  PubMed  Google Scholar 

  65. Chen L et al (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408:936–943

    Article  CAS  PubMed  Google Scholar 

  66. Cho CH, St-Gelais F, Zhang W, Tomita S, Howe JR (2007) Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 55:890–904

    Article  CAS  PubMed  Google Scholar 

  67. Coombs ID et al (2012) Cornichons modify channel properties of recombinant and glial AMPA receptors. J Neurosci 32:9796–9804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Gill MB, Kato AS, Wang H, Bredt DS (2012) AMPA receptor modulation by cornichon-2 dictated by transmembrane AMPA receptor regulatory protein isoform. Eur J Neurosci 35:182–194

    Article  PubMed  Google Scholar 

  69. Kott S, Sager C, Tapken D, Werner M, Hollmann M (2009) Comparative analysis of the pharmacology of GluR1 in complex with transmembrane AMPA receptor regulatory proteins gamma2, gamma3, gamma4, and gamma8. Neuroscience 158:78–88

    Article  CAS  PubMed  Google Scholar 

  70. Letts VA et al (1998) The mouse stargazer gene encodes a neuronal Ca2+ -channel gamma subunit. Nat Genet 19:340–347

    Article  CAS  PubMed  Google Scholar 

  71. Milstein AD, Zhou W, Karimzadegan S, Bredt DS, Nicoll RA (2007) TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55:905–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Priel A et al (2005) Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J Neurosci 25:2682–2686

    Article  CAS  PubMed  Google Scholar 

  73. Soto D, Coombs ID, Kelly L, Farrant M, Cull-Candy.SG (2007) Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat Neurosci 10:1260–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Soto D et al (2009) Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5. Nat Neurosci 12:277–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Turetsky D, Garringer E, Patneau DK (2005) Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J Neurosci 25:7438–7448

    Article  CAS  PubMed  Google Scholar 

  76. Ziff EB (2007) TARPs and the AMPA receptor trafficking paradox. Neuron 53:627–633

    Article  CAS  PubMed  Google Scholar 

  77. Rouach N et al (2005) TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 8:1525–1533

    Article  CAS  PubMed  Google Scholar 

  78. Bats C, Soto D, Studniarczyk D, Farrant M, Cull-Candy SG (2012) Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nat Neurosci 15:853–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Jackson AC, Nicoll RA (2011) Stargazin (TARP gamma-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells. J Neurosci 31:3939–3952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Menuz K, Kerchner GA, O’Brien JL, Nicoll RA (2009) Critical role for TARPs in early development despite broad functional redundancy. Neuropharmacology 56:22–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Menuz K, Nicoll RA (2008) Loss of inhibitory neuron AMPA receptors contributes to ataxia and epilepsy in stargazer mice. J Neurosci 28:10599–10603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Trussell LO, Zhang S, Raman IM (1993) Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10:1185–1196

    Article  CAS  PubMed  Google Scholar 

  83. Menuz K, O’Brien JL, Karmizadegan S, Bredt DS, Nicoll RA (2008) TARP redundancy is critical for maintaining AMPA receptor function. J Neurosci 28:8740–8746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Tomita S et al (2005) Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435:1052–1058

    Article  CAS  PubMed  Google Scholar 

  85. Greger IH, Ziff EB, Penn AC (2007) Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 30:407–416

    Article  CAS  PubMed  Google Scholar 

  86. Greger IH, Akamine P, Khatri L, Ziff EB (2006) Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis. Neuron 51:85–97

    Article  CAS  PubMed  Google Scholar 

  87. Penn AC, Williams SR, Greger IH (2008) Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum. EMBO J 27:3056–3068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Sumioka A, Yan D, Tomita S (2010) TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 66:755–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Opazo P et al (2010) CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67:239–252

    Article  CAS  PubMed  Google Scholar 

  90. Nomura T et al (2012) Cerebellar long-term depression requires dephosphorylation of TARP in Purkinje cells. Eur J Neurosci 35:402–410

    Article  PubMed  Google Scholar 

  91. Sumioka A et al (2011) PDZ binding of TARPgamma-8 controls synaptic transmission but not synaptic plasticity. Nat Neurosci 14:1410–1412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Heine M et al (2008) Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320:201–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Constals A et al (2015) Glutamate-Induced AMPA Receptor Desensitization Increases Their Mobility and Modulates Short-Term Plasticity through Unbinding from Stargazin. Neuron 85:787–803

    Article  CAS  PubMed  Google Scholar 

  94. Lissin DV et al (1998) Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc Natl Acad Sci U S A 95:7097–7102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. O’Brien RJ et al (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–1078

    Article  PubMed  Google Scholar 

  96. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896

    Article  CAS  PubMed  Google Scholar 

  97. Everett K et al (2007) Linkage and mutational analysis of CLCN2 in childhood absence epilepsy. Epilepsy Res 75:145–153

    Article  CAS  PubMed  Google Scholar 

  98. Knight HM et al (2008) Homozygosity mapping in a family presenting with schizophrenia, epilepsy and hearing impairment. Eur J Hum Genet 16:750–758

    Article  CAS  PubMed  Google Scholar 

  99. Liu YL et al (2008) RASD2, MYH9, and CACNG2 genes at chromosome 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function. Biol Psychiatry 64:789–796

    Article  CAS  PubMed  Google Scholar 

  100. Silberberg G et al (2008) Stargazin involvement with bipolar disorder and response to lithium treatment. Pharmacogenet Genomics 18:403–412

    Article  CAS  PubMed  Google Scholar 

  101. Wilson GM et al (2006) DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet 15:743–749

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by the German Research Foundation (DFG) within the Collaborative Research Center (SFB) 1134 “Functional Ensembles” and the Research Grant EN948/1–1. We would like to thank Dagmar Anders from the DKFZ and Eric Jacobi for the generation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob von Engelhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monyer, H., von Engelhardt, J. Modulation of AMPA receptor function by auxiliary subunits. e-Neuroforum 6, 39–48 (2015). https://doi.org/10.1007/s13295-015-0005-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-015-0005-z

Keywords

Navigation