Skip to main content

Advertisement

Log in

Development of science and policy related to acid deposition in East Asia over 30 years

  • Review
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Scientific and public interest in acid deposition and its ecological impacts have increased throughout 1990s in East Asia (Northeast and Southeast Asia). After being established in 2001, the Acid Deposition Monitoring Network in East Asia (EANET) celebrates the 20th anniversary in 2021, and is now being expanded in scope reflecting the shifting social concern from acid deposition to broader air quality and climate change in recent years. This paper reviews the past 30 years of development of scientific research and policy related to acid deposition in East Asia. Since the onset of the twenty-first century, East Asia has had the highest SO2 and NOx emissions in the world by continents, with substantial economic developmental inequality among countries. An overview of studies on sulfur and nitrogen deposition, the acidification of inland water and forest soil, and forest decline reveal that although limited acidification of inland water and forest soils have been documented, no decline in the populations of fish and other aquatic biota has been reported in East Asia. After a review of policy-oriented modeling studies on source receptor relationships and the critical loads of sulfur and nitrogen in East Asia, the history of EANET and its success and challenges are discussed. Finally, the importance of epistemic communities as the interface between science and policy in the region is discussed. Regional governance and cooperation are essential for reducing the emission of greenhouse gases, especially short-lived climate pollutants and atmospheric pollutants to realize the co-benefits of global climate change mitigation and improved air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

adapted from Duan et al. 2016)

Fig. 5

Adapted from Yu et al. 2020)

Fig. 6
Fig. 7

(adapted from Posch et al. 2015)

Similar content being viewed by others

References

  • ACAP. 2021. https://www.acap.asia/en/research-main/MICS-Asia/.

  • Aikawa, M., T. Ohara, T. Hiraki, O. Oishi, A. Tsuji, M. Yamagami, K. Murano, and H. Mukai. 2010. Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent. Atmospheric Environment 44: 381–391.

    Article  CAS  Google Scholar 

  • Akimoto, H., J. Kurokawa, K. Sudo, T. Nagashima, T. Takemura, Z. Klimont, M. Amann, and K. Suzuki. 2015. SLCP co-control approach in East Asia: Tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMVOC and methane. Atmospheric Environment 122: 588–595.

    Article  CAS  Google Scholar 

  • Alcamo, J., R. Shaw, and L. Hordijk, eds. 1990. The RAINS model of acidification. Science and strategies in Europe. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Arndt, R.L., and G.R. Carmichael. 1995. Long-range transport and deposition of sulfur in Asia. Water, Air, & Soil Pollution 85: 2283–2288.

    Article  CAS  Google Scholar 

  • Bashkin, V.N., M.Y. Kozlovl, I.V. Priputina, A.Y. Abramychev, and I.S. Dedkova. 1995. Calculation and mapping of critical loads of S, N and acidity on ecosystems of the northern Asia. Water Air, & Soil Pollution 85: 2395–2400.

    Article  CAS  Google Scholar 

  • Bashkin, V.N., and M.Y. Kozlov. 1999. Biogeochemical approaches to assessment of East Asian ecosystem sensitivity to acid deposition. Biogeochemistry 47: 147–165.

    CAS  Google Scholar 

  • Baumgardner, R.E., T.F. Lavery, C.M. Rogers, and S.S. Isil. 2002. Estimates of the atmospheric deposition of sulfur and nitrogen species: Clean air status and trends network, 1990–2000. Environmental Science and Technology 36: 2614–2629.

    Article  CAS  Google Scholar 

  • Bhatti, N., D.G. Streets, and W.K. Foell. 1992. Acid rain in Asia. Environmental Management 16: 541–562.

    Article  Google Scholar 

  • Bian, Y.-M., and S.-W. Yu. 1992. Forest decline in Nanshan, China. Forest Ecology and Management 51: 53–59.

    Article  Google Scholar 

  • Burns, D.A., J.A. Lynch, B.J. Cosby, M.E. Fenn, and J.S. Baron. 2011. National Acid Precipitation Assessment Program Report to Congress 2011: An Integrated Assessment. Washington, D.C.: National Science and Technology Council.

    Google Scholar 

  • Carmichael, G.R., and R.L. Arndt. 1995. Chapter 5, ATMOS module, long range transport and deposition of sulfur in Asia (RAINS-Asia: An assessment model for air pollution in Asia, Foell, W. et al. Report on the World Bank Sponsored Project “Acid Rain and Emission Reduction in Asia”, VI–V58.

  • Carmichael, G.R., H. Hayami, G. Calori, I. Uno, S.Y. Cho, M. Engardt, E.S. Kim, Y. Ichikawa, et al. 2001. Model intercomparison study of long-range transport and sulfur deposition in East Asia (MICS-Asia). Water, Air, & Soil Pollution 130: 51–62.

    Article  CAS  Google Scholar 

  • Carmichael, G.R., G. Calori, H. Hayami, I. Uno, S.Y. Cho, M. Engardt, S.-B. Kim, Y. Ichikawa, et al. 2002. The MICS-Asia study: Model intercomparison of long-range transport and sulfur deposition in East Asia. Atmospheric Environment 36: 175–199.

    Article  CAS  Google Scholar 

  • Carmichael, G.R., T. Sakurai, D. Streets, Y. Hozumi, H. Ueda, S.U. Park, C. Fung, Z. Han, et al. 2008. MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings. Atmospheric Environment 42: 3468–3490.

    Article  CAS  Google Scholar 

  • CCAC. 2021. https://ccacoalition.org/.

  • Chu, J.M. 2018. Resilience evaluation of the TEMM cooperation: DSS and air pollution, Chapter 3, Approaches to Address Increasing Complexity of Sustainability Challenges in East Asia, IDE-JETRO, 36–52.

  • Chung, Y.S., and T.K. Kim. 1991. On the source of acid rain observed in the west coast of Korea. Journal of Korea. Air Pollution Research Association 7: 203–207.

    Google Scholar 

  • Dai, Z., Y. Liu, X. Wang, and D. Zhao. 1998. Changes in pH, CEC and exchangeable acidity of some forest soils in Southern China during the last 32–35 years. Water, Air, & Soil Pollution 108: 377–390.

    Article  CAS  Google Scholar 

  • Duan, L., S. Xie, Z. Zhou, and J. Hao. 2000. Critical loads of acid deposition on soil in China. Water, Air, & Soil Pollution 118: 35–51.

    Article  CAS  Google Scholar 

  • Duan, L., X. Ma, T. Larssen, J. Mulder, and J. Hao. 2011. Response of surface water acidification in Upper Yangtze River to SO2 emissions abatement in China. Environmental Science and Technology 45: 3275–3281.

    Article  CAS  Google Scholar 

  • Duan, L., Q. Yu, Q. Zhang, Z. Wang, Y. Pan, T. Larssen, J. Tang, and Ja.. Mulder. 2016. Acid deposition in Asia: Emissions, deposition, and ecosystem effects. Atmospheric Environment 146: 55–69.

    Article  CAS  Google Scholar 

  • EANET. 2000. Guidelines for Acid Deposition Monitoring in East Asia, Network Center for EANET, Niigata, Japan. https://www.eanet.asia/wp-content/uploads/2019/04/monitorguide.pdf.

  • EANET. 2010. Technical Manual for Dry Deposition Flux Estimation in East Asia, Network Center for EANET, Niigata, Japan. https://www.eanet.asia/wp-content/uploads/2019/04/techdry.pdf.

  • EANET. 2016a. Third Periodical Report on the State of Acid Deposition in East Asia, Part I Regional Assessment, Secretariat Service, Bangkok, and Network Center for EANET, Niigata, Japan. https://www.eanet.asia/wp-content/uploads/2019/03/3_PRSAD1.pdf.

  • EANET. 2016b. Quality assurance/ Quality control (QA/QC) Guidebook for Acid Deposition Monitoring Network in East Asia, Network Center for EANET, Niigata, Japan. https://www.eanet.asia/wp-content/uploads/2019/04/QAQC_Guidebook2016.pdf.

  • EANET. 2019a. Fourth Report for Policy Makers: “Towards Clean Air for Sustainable Future in East Asia Through Collaborative Activities”. Secretariat for the Acid Deposition Monitoring Network in East Asia (EANET), Bangkok, Thailand. https://www.eanet.asia/wp-content/uploads/2020/03/EANET-RPM4_2019.pdf.

  • EANET, 2019b. Report of the session, The Twenty-first Session of the Intergovernmental Meeting on the Acid Deposition Monitoring Network in East Asia 12–13 November 2019, Beijing, China.

  • EANET. 2020. Data Report 2019, Network Center for EANET, Niigata, Japan. https://monitoring.eanet.asia/document/public/index.

  • EDGAR. 2021. https://data.jrc.ec.europa.eu/collection/edgar.

  • Engardt, M., U. Siniarovina, N.I. Khairul, and C.P. Leong. 2005. Country to country transport of anthropogenic sulphur in Southeast Asia. Atmospheric Environment 39: 5137–5148.

    Article  CAS  Google Scholar 

  • Feng, Z.W., and Z.Y. Chen. 1986. Effect of acid rain on the productivity of masson pine forest in Chongqing area. Atmospheric Environment, Acid Rain 3: 38–45 (in Chinese).

    Google Scholar 

  • Gao, M., Z. Han, Z. Liu, M. Li, J. Xin, Z. Tao, J. Li, J.-E. Kang, et al. 2018. Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III) – Part 1: Overview and model evaluation. Atmospheric Chemistry and Physics 18: 4859–4884.

  • Gregor, H.-D., H.-D. Nagel, and M. Posch. 2001. The UN/ECE international programme on mapping critical loads and levels. Water, Air, & Soil Pollution: Focus 1: 5–19.

    Article  CAS  Google Scholar 

  • Grennfelt, P., A. Engleryd, M. Forsius, Ø. Hov, H. Rodhe, and E. Cowling. 2020. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio 49: 849–864. https://doi.org/10.1007/s13280-019-01244-4

    Article  CAS  Google Scholar 

  • Haas, P.M. 1992. Introduction: Epistemic communities and international policy coordination. International Organization 46: 1–35.

    Article  Google Scholar 

  • Haas, P.M., and C. Stevens. 2011. Organized science, usable knowledge, and multilateral environmental governance. In Governing the air: The dynamics of science, policy, and citizen interaction, ed. R. Lidskog and G. Sundqvist. Cambridge: MIT Press.

    Google Scholar 

  • Hao, J., S. Wang, B. Liu, and K. He. 2000. Designation of acid rain and SO2 control zones and control policies in China. Journal of Environmental Science and Health A35: 1901–1914.

    Article  CAS  Google Scholar 

  • Hara, H., E. Ito, T. Katou, Y. Kitamura, T. Komeiji, M. Oohara, T. Okita, K. Sekiguchi, et al. 1990. Analysis of two-year results of acid precipitation survey within Japan. Bulletin of Chemical Society of Japan 63: 2691–2697.

    Article  Google Scholar 

  • Hara, H. 1993. Acid deposition chemistry in Japan. The Bulletin of the High Institute of Public Health 42: 426–437.

    Google Scholar 

  • Hashimoto, S., H. Bandow, H. Akimoto, J.-H. Weng, and X.-Y. Tang. 1984. Products and mechanism for the OH radical initiated oxidation of acrylonitrile, methacrylonitrile and allycyanide in the presence of NO. International Journal of Chemical Kinetics 16: 1385–1399.

    Article  CAS  Google Scholar 

  • Hettelingh, J., H. Sverdrup, and D. Zhao. 1995. Deriving critical loads for Asia. Water, Air and Soil Pollution 85: 2565–2570.

    Article  CAS  Google Scholar 

  • Huang, M., Z. Wang, D. He, H. Xu, and L. Zhou. 1995. Studies on sulfur deposition and transport in East Asia. Water, Air, & Soil Pollution 85: 1921–1926.

    Article  CAS  Google Scholar 

  • Huang, Y., R. Kanga, X. Ma, Y. Qiu, J. Mulder, and L. Duan. 2014. Effects of calcite and magnesite application to a declining Masson pine forest on strongly acidified soil in Southwestern China. Science of the Total Environment 481: 469–478.

    Article  CAS  Google Scholar 

  • Ichikawa, Y., and S. Fujita. 1995. An analysis of wert deposition of sulfate using a trajectory model for East Asia. Water, Air, & Soil Pollution 85: 1927–1932.

    Article  CAS  Google Scholar 

  • Ichikawa, Y., H. Hayami, and S. Fujita. 1998. A Long-range transport model for East Asia to estimate sulfur deposition in Japan. Journal of Applied Meteorology 37: 1364–1374.

    Article  Google Scholar 

  • Ikeda, Y., and H. Higashino. 1997. The estimation of acid deposition in East Asia (II) – Focused on the ratio of source contribution of the deposition. Journal of Japan Society of Atmospheric Environment 32: 175–186 (in Japanese with English abstract).

    CAS  Google Scholar 

  • Itahashi, S., B. Ge, K. Sato, J.S. Fu, X. Wang, K. Yamaji, T. Nagashima, J. Li, et al. 2020. MICS-Asia III: Overview of model intercomparison and evaluation of acid deposition over Asia. Atmospheric Chemistry and Physics 20: 2667–2693.

    Article  CAS  Google Scholar 

  • Ito, K., Y. Uchiyama, N. Kurokami, K. Sugano, and Y. Nakanishi. 2011. Soil acidification and decline of trees in forests within the precincts of shrines in Kyoto (Japan). Water, Air and Soil Pollution 214: 197–204.

    Article  CAS  Google Scholar 

  • Khemani, L.T., G.A. Momin, P.S. Prakasa Rao, P.D. Safai, G. Singh, and R.K. Kapoor. 1989. Spread of acid rain over India. Atmospheric Environment 23: 757–762.

    Article  Google Scholar 

  • Kim, I. 2007. Environmental cooperation of Northeast Asia: Transboundary air pollution. International Relations of the Asia-Pacific 7: 439–462.

    Article  Google Scholar 

  • Kohno, Y., H. Matsumura, and T. Kobayashi. 1998. Differential Sensitivity of Trees to Simulated Acid Rain or Ozone in Combination with Sulfur Dioxide. In Bashkin, V. and S. Park (eds). 1998. Acid Deposition and Ecosystem Sensitivity in East Asia. Proceedings of International Symposium on Acid Deposition and Ecosystem Sensitivity East Asia, INTECOL Congress, Florence Italy, 19–25, July 1998.

  • Kohno, Y., H. Suto, T. Ishii, K. Aihara, and Y. Uchiyama. 2007. Concentration of AOT40 of ozone in Tanzawa, Mountains and its potential effect on Japanese beech forests, Results of the Scientific Research on the Tanzawa Mountains, Kanagawa Prefecture pp. 383–395 (In Japanese).

  • Kume, A., N. Tsuboi, T. Satomura, M. Suzuki, M. Chiwa, K. Nakane, N. Sakurai, T. Horikoshi, et al. 2000. Physiological characteristics of Japanese red pine, Pinus densiflora Sieb. et Zucc., in declined forests at Mt. Gokurakuji in Hiroshima Prefecture, Japan. Trees 14: 305–311.

    Google Scholar 

  • Kurokawa, J., and T. Ohara. 2020. Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3. Atmospheric Chemistry and Physics 20: 12761–12793.

    Article  CAS  Google Scholar 

  • Larssen, T., and G.R. Carmichael. 2000. Acid rain and acidification in China: The importance of base cation deposition. Environmental Pollution 110: 89–102.

  • Larssen, T., X. Jiling, R.D. Vogt, H.M. Seip, L. Bohan, and Z. Dianwu. 1998. Studies of soils, soil water and stream water at a small catchment near Guiyang, China. Water, Air, & Soil Pollution 101: 137–162.

    Article  CAS  Google Scholar 

  • Larssen, T., H.M. Seip, A. Semb, J. Mulderc, I.P. Munizd, R.D. Vogta, E. Lydersen, V. Angell, et al. 1999. Acid deposition and its effects in China: An overview. Environmental Science and Policy 2: 9–24.

    Article  CAS  Google Scholar 

  • Lee, C.H., S.W. Lee, E.Y. Kim, J.H. Jeong, H.J. Cho, G.S. Park, C.U. Lee, and Y.H. Jeong. 2005. Effects of air pollution and acid deposition on three Pinus densiflora (Japanese Red Pine) forests in South Korea. Journal of Agricultural Meteorology. 60: 1153–1156.

    Article  Google Scholar 

  • Lei, Y., Q. Zhang, K.B. He, and D.G. Streets. 2011. Primary anthropogenic aerosol emission trends for China, 1990–2005. Atmospheric Chemistry and Physics 11: 931–954.

    Article  CAS  Google Scholar 

  • Li, J., T. Nagashima, L. Kong, B. Ge, K. Yamaji, J.S. Fu, X. Wang, Q. Fan, et al. 2019. Model evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the context of MICS-Asia Phase III – Part 1: Overview. Atmospheric Chemistry and Physics 19: 12993–13015.

    Article  CAS  Google Scholar 

  • Lin, M., T. Oki, M. Bengtsson, S. Kanae, T. Holloway, and D.G. Streets. 2008. Long-range transport of acidifying substances in East Asia - Part II: Source-receptor Relationships. Atmospheric Environment 42: 5956–5967.

    Article  CAS  Google Scholar 

  • Liu, H., W. Zhang, Y. Shen, X. Du, X. Zhou, R. Liu, L. Ma, S. Du, and Q. Tang. 1988. Relationship between acid rain and the decline of a masson pine forest in Nanshan, Chongqing. Acta Scientiae Circumstantiae 8: 331–339 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Liu, K.H., Y.T. Fang, F.M. Yu, Q. Liu, F.R. Li, and S.L. Peng. 2010. Soil acidification in response to acid deposition in three subtropical forests of subtropical China. Pedosphere 20: 399–408.

    Article  CAS  Google Scholar 

  • Maione, M., D. Flower, P.S. Monks, and S. Reis. 2016. Air quality and climate change: Designing new win-win policies for Europe. Environmental Science and Policy 65: 48–57.

    Article  Google Scholar 

  • Matsubara, M., S. Morimoto, H. Sase, T. Ohizumi, H. Sumida, M. Nakata, and H. Ueda. 2009. Long-term declining trends of river water pH in Central Japan. Water, Air, & Soil Pollution 200: 253–265.

    Article  CAS  Google Scholar 

  • Menz, F.C., and H. Seip. 2004. Acid rain in Europe and United States: An update. Environmental Science and Policy 7: 253–265.

    Article  CAS  Google Scholar 

  • Nakahara, O., M. Takahashi, H. Sase, T. Yamada, K. Matsuda, T. Ohizumi, H. Fukuhara, T. Inoue, et al. 2010. Soil and stream water acidification in a forested catchment in central Japan. Biogeochemistry 97: 141–158.

    Article  Google Scholar 

  • Nilsson, J., and P. Grennfelt. 1988. Critical loads for sulphur and nitrogen. Nordic Council of Ministers. Miljoerapport 1988: 15.

    Google Scholar 

  • Ohizumi, T., Y. Kato, K. Sato, and H. Sase. 2021. Diversity and long-term trends of acid deposition in East Asia in view of the relation among concentration and deposition of acidic substances and precipitation, Abstract of the 62nd Annual Meeting of Japan Society for Atmospheric Environment (in print).

  • Ohte, N., N. Tokuchi, H. Shibata, M. Tsujimura, T. Tanaka, and M.J. Mitchell. 2001. Hydrobiogeochemistry of forest ecosystems in Japan: Major themes and research issues. Hydrological Processes 15: 1771–1789.

    Article  Google Scholar 

  • Otsuka, K., and F.T. Cheng. 2020. Embryonic forms of private environmental governance in Northeast Asia. The Pacific Review. https://doi.org/10.1080/09512748.2020.1811372.

    Article  Google Scholar 

  • Park, S.-U., and Y.-H. Lee. 2001. Estimation of the maximum critical load for sulfur in South Korea. Water Air, & Soil Pollution 130: 1145–1150.

    Article  Google Scholar 

  • Park, S.-U., and J.-M. Shim. 2002. Estimation of critical loads of. Sulfur and nitrogen for the Korean Ecosystem. International Journal of the Society of Materials Engineering for Resources 10: 121–129.

    Article  CAS  Google Scholar 

  • Posch, M., L. Duan, G.J. Reinds, and Y. Zhao. 2015. Critical loads of nitrogen and sulfur to avert acidification and eutrophication in Europe and China. Landscape Ecology 30: 487–499.

    Article  Google Scholar 

  • Qiao, Y., J. Feng, X. Liu, W. Wang, P. Zhang, and L. Zhu. 2016. Surface water pH variations and trends in China from 2004 to 2014. Environmental Monitoring and Assessment 188 (443): 13.

    Google Scholar 

  • Qu, Y., J. An, Y. He, and J. Zheng. 2016. An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia. Journal of Environmental Sciences 44: 13–25.

    Article  CAS  Google Scholar 

  • Sase, H., T. Saito, M. Takahashi, M. Morohashi, N. Yamashita, Y. Inomata, T. Ohizumi, and M. Nakata. 2021. Transboundary air pollution reduction rapidly reflected in stream water chemistry in forested catchment on the Sea of Japan coast in central Japan. Atmospheric Environment 248: 118223.

    Article  CAS  Google Scholar 

  • Sase, H., M. Takahashi, K. Matsuda, K. Sato, T. Tanikawa, N. Yamashita, T. Ohizumi, T. Ishida, et al. 2019. Response of river water chemistry to changing atmospheric environment and sulfur dynamics in a forested catchment in central Japan. Biogeochemistry 142: 357–374.

    Article  CAS  Google Scholar 

  • Sase, H., N. Yamashita, J. Luangjame, H. Garivait, B. Kietvuttinon, T. Visaratana, M. Kamisako, R. Kobayashi, et al. 2017. Alkalinization and acidification of stream water with changes in atmospheric deposition in a tropical dry evergreen forest of northeastern Thailand. Hydrological Processes 31: 836–846.

    Article  Google Scholar 

  • Schmale, J., D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence. 2014. Air pollution: Clean up our skies. Nature 515: 335–337.

    Article  CAS  Google Scholar 

  • Sekiguchi, K., Y. Hara, and A. Ujiiye. 1986. Dieback of Cryptomeria japonica and distribution of acid deposition and oxidant in Kanto District of Japan. Environmental Technology Letters 7: 263–268.

    Article  CAS  Google Scholar 

  • Shah, J., T. Nagpal, T. Johnson, M. Amann, G.R. Carmichael, W. Foell, C. Green, J.P. Hettelingh, et al. 2000. Integrated analysis for acid rain in Asia: Policy implications and results of RAINS-Asia model. Annual Review of Energy and the Environment 25: 339–375.

    Article  Google Scholar 

  • Shigihara, A., Y. Matsumura, M. Kashiwagi, K. Matsumoto, and M. Igawa. 2009. Effects of acidic fog and ozone on the growth and physiological functions of Fagus crenata saplings. Journal of Forest Research 14: 394–399.

    Article  CAS  Google Scholar 

  • Shindell, D., J.C.I. Kuylenstierna, E. Vignati, R. Dingenen, M. Amann, Z. Klimont, S.C. Anenberg, N. Muller, et al. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335: 183–188.

    Article  CAS  Google Scholar 

  • Shindo, J., A.K. Bregt, and T. Hakamata. 1995. Evaluation of estimation methods and base data uncertainties for critical loads of acid deposition in Japan. Water, Air, & Soil Pollution 85: 2571–2576.

    Article  CAS  Google Scholar 

  • Sun, W., M. Shao, C. Granier, Y. Liu, C.S. Ye, and J.Y. Zheng. 2018. Long-term trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in China. Earth’s Future 6: 1112–1133.

    Article  CAS  Google Scholar 

  • Sundqvist, G., M. Letell, and R. Lidskog. 2002. Science and policy in air pollution abatement strategies. Environmental Science & Policy 5: 147–156.

    Article  CAS  Google Scholar 

  • Sverdrup, H., and W. de Vries. 1994. Calculating critical loads for acidity with the simple mass balance method. Water, Air, & Soil Pollution 72: 143–162.

    Article  CAS  Google Scholar 

  • Takahashi, W. 2000. Formation of an East Asian regime for acid rain control: The perspective of comparative regionalism. International Review for Environmental Strategies 1: 97–117.

    Google Scholar 

  • Takahashi, W. 2002. Problem of environmental cooperation in Northeast Asia: The case of acid rain. In International environmental cooperation: Policies and diplomacy in Pacific Asia, ed. P.G. Harris. Boulder: University Press of Colorado.

    Google Scholar 

  • Takahashi, M., Z. Feng, T.A. Mikhailova, O.V. Kalugina, O.V. Shergina, L.V. Afanasieva, R.K.J. Heng, N.M.A. Majid, and H. Sase. 2020. Air pollution monitoring and tree and forest decline in East Asia: A review. Science of the Total Environment 742: 20.

    Article  CAS  Google Scholar 

  • Tanimoto, H., T. Ohara, and I. Uno. 2009. Asian anthropogenic emissions and decadal trends in springtime tropospheric ozone over Japan: 1998–2007. Geophysical Research Letters 36: L23802. https://doi.org/10.1029/2009GL041382.

    Article  CAS  Google Scholar 

  • TFRC/SAC/EANET. 2015. Chapter 4 Acidification and Eutrophication in Review on the State of Air Pollution in East Asia, Task Force on Research Coordination (TFRC), Scientific Advisory Committee (SAC), Acid Deposition Monitoring Network in East Asia (EANET), https://www.eanet.asia/wp-content/uploads/2019/04/RSAP.pdf.

  • Thambiran, T., and R.D. Diab. 2011. Air pollution and climate change co-benefit opportunities in the road transportation sector in Durban, South Africa. Atmospheric Environment 45: 2683–2689.

    Article  CAS  Google Scholar 

  • Tuinstra, W., L. Hordijk, and M. Amann. 1999. Using computer models in international negotiations: The case of acidification in Europe. Environment: Science and Policy for Sustainable Development 41: 32–42.

    Google Scholar 

  • Ulrich, B., R. Mayer, and P.K. Khanna. 1980. Chemical changes due to acid precipitation in a loess-derived soil in Central Europe. Soil Science 130: 193–199.

    Article  CAS  Google Scholar 

  • UN Environment. 2021. Asia Pacific Clean Air Partnership, https://www.unep.org/asia-and-pacific/asia-pacific-clean-air-partnership.

  • UN Environment. 2019. Global Environment Outlook GEO-6 Healthy Planet, Healthy People, Eds. P. Ekins, J. Gupta and P. Boileau, Cambridge University Press, Cambridge, UK.

  • UN Environment. 2021. Air Pollution in Asia and the Pacific: Science-based Solutions–Summary, https://wedocs.unep.org/20.500.11822/26861.

  • UNEP. 2011. Near-term climate protection and clean air benefits: actions for controlling short-lived climate forcers. UNEP, Nairobi.

  • UNEP/WMO. 2011. Integrated assessment of black carbon and tropospheric ozone: summary for decision makers. http://www.unep.org/dewa/Portals/67/pdf/Black_Carbon.pdf.

  • Wang, C.-H., S. Munzi, M. Wang, Y.-Z. Jia, and W. Tao. 2019. Increasing nitrogen depositions can reduce lichen viability and limit winter food for an endangered Chinese monkey. Basic and Applied Ecology 34: 55–63.

    Article  CAS  Google Scholar 

  • Wang, M., Q. Sun, X. Tang, and L. Qi. 1989. Study on precipitation scavenging of nitric acid and nitrate over Guangdong and Guanxi areas. Research of Environmental Science. 2: 24–29 (in Chinese).

    CAS  Google Scholar 

  • Wang, Y., S. Solberg, P. Yu, T. Myking, R.D. Vogt, and S. Du. 2007. Assessments of tree crown condition of two Masson pine forests in the acid rain region in south China. Forest Ecology and Management 242: 530–540.

    Article  Google Scholar 

  • Wang, Z., H. Akimoto, and I. Uno. 2002. Neutralization of soil aerosol and its impact on the distribution of acid rain over East Asia: Observation and model results. Journal of Geophysical Research 107: 4389. https://doi.org/10.1029/2001JD001040.

    Article  Google Scholar 

  • Wang, Z., F. Xie, T. Sakurai, H. Ueda, Z. Han, G.R. Carmichael, D. Streets, M. Engardt, et al. 2008. MICS-Asia II: Model inter-comparison and evaluation of acid deposition. Atmospheric Environment 42: 3528–3542.

    Article  CAS  Google Scholar 

  • Wen, Z.WXu., Q. Li, M. Han, A. Tang, Y. Zhang, X. Luo, J. Shen, et al. 2020. Changes of nitrogen deposition in China from 1980 to 2018. Environment International 144: 106022.

    Article  CAS  Google Scholar 

  • WHO. 2005. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global updates. Summary of risk assessment. Geneva: WHO Press.

    Google Scholar 

  • WHO. 2014. 7 million premature deaths annually linked to air pollution. http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/.

  • World Bank. 2021. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD.

  • Xia, Y., Y. Zhao, and C.P. Nielsen. 2016. Benefits of China’s efforts in gaseous pollutant control indicated by the bottom-up emissions and satellite observations 2000–2014. Atmospheric Environment 136: 43–53.

    Article  CAS  Google Scholar 

  • Xie, D., B. Zhao, S. Wang, and L. Duan. 2020. Benefit of China’s reduction in nitrogen oxides emission to natural ecosystems in East Asia with respect to critical load exceedance. Environment International 136: 105468. https://doi.org/10.1016/j.envint.2020.105468.

    Article  CAS  Google Scholar 

  • Xuan, C., S. Xiaoran, S. Zhaoji, Z. Jiaen, Q. Zhong, X. Huimin, and W. Hui. 2021. Analysis of the spatio-temporal changes in acid rain and their causes in China (1998–2018). Journal of Resources and Ecology 12: 593–599.

    Article  Google Scholar 

  • Xue, H.B., and J.L. Schnoor. 1994. Acid deposition and lake chemistry in southwest China. Water, Air, & Soil Pollution 75: 61–78.

    Article  CAS  Google Scholar 

  • Yamada, T., T. Inoue, H. Fukuhara, O. Nakahara, T. Izuta, R. Suda, M. Takahashi, H. Sase, et al. 2007. Long-term trends in surface water quality of five lakes in Japan. Water, Air, & Soil Pollution: Focus 7: 259–266.

    Article  CAS  Google Scholar 

  • Yang, Y., C. Ji, W. Ma, S. Wang, S. Wang, W. Han, A. Mohammat, D. Robinson, and P. Smith. 2012. Significant soil acidification across northern China’s grassland during 1980s–2000s. Global Change Biology 18: 2292–2300.

    Article  Google Scholar 

  • Yarime, M., and A. Li. 2018. Facilitating international cooperation on air pollution in East Asia: Fragmentation of the epistemic communities. Global Policy 9: 35–41.

    Article  Google Scholar 

  • Yu, Q., T. Zhang, Z. Cheng, B. Zhao, J. Mulder, T. Larssen, S. Wang, and L. Duan. 2017a. Is surface water acidification a serious regional issue in China? Science of the Total Environment 584–585: 783–790.

    Article  CAS  Google Scholar 

  • Yu, Q., T. Zhang, X. Ma, R. Kang, J. Mulder, T. Larssen, and L. Duan. 2017b. Monitoring effect of SO2 emission abatement on recovery of acidified soil and streamwater in southwest China. Environmental Science and Technology 51: 9498–9506.

    Article  CAS  Google Scholar 

  • Yu, S.-W., Y.M. Bian, G.-J. Ma, and J.-J. Luo. 1990. Studies of the causes of forest decline in Nanshan, Chongqing. Environmental Monitoring and Assessment 14: 239–246.

    Article  Google Scholar 

  • Yu, Z., H.Y.H. Chena, E.B. Searle, J. Sardans, P. Ciais, J. Peñuelas, and Z. Huang. 2020. Whole soil acidification and base cation reduction across subtropical China. Geoderma. https://doi.org/10.1016/j.geoderma.2019.114107.

    Article  Google Scholar 

  • Yuan, S. 1984. Forest decline in Nanshan. Pest Protection of Forestry 8: 23–31 (in Chinese).

    Google Scholar 

  • Zhao, D., J. Xiong, Y. Xu, and W. Chan. 1985. Acid rain in southwestern China. Atmospheric Environment 22: 349–358.

    Google Scholar 

  • Zhao, D., and B. Sun. 1986. Air pollution and acid rain in China. Ambio 15: 2–5.

    CAS  Google Scholar 

  • Zhao, D., T. Larssen, D. Zhang, S. Gao, R.D. Vogt, H.M. Seip, and O.J. Lund. 2001. Acid deposition and acidification of soil and water in the Tie Shan Ping area, Chongqing, China. Water, Air, and Soil Pollution 130: 1733–1738.

    Article  Google Scholar 

  • Zhao, Y., L. Duan, J. Xing, T. Larssen, C.P. Nielsen, and J. Hao. 2009. Soil acidification in China: Is controlling SO2 emissions enough? Environmental Science and Technology 43: 8021–8026.

    Article  CAS  Google Scholar 

  • Zhao, Y., L. Duan, Y. Lei, J. Xing, C.P. Nielsen, and H. Hao. 2011. Will PM control undermine China’s efforts to reduce soil acidification? Environmental Pollution 159: 2726–2732.

    Article  CAS  Google Scholar 

  • Zhu, Q., W. De Vries, X. Liu, M. Zeng, T. Hao, E. Du, F. Zhang, and J. Shen. 2016. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980. Atmospheric Environment 146: 215–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staffs of ACAP—Shiro Hatakeyama, Tsuyoshi Ohizumi, Ken Yamashita, and Jun’ichi Kurokawa—for their support of this study, and Jun’ichi Kurokawa and Tsuyoshi Ohizumi for providing figures (Figs. 2 and 3, respectively). This study was partially funded by Niigata University. We would like to thank Editage (www.editage.com) for English language editing.

Funding

Funding was provided by Niigata University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Akimoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimoto, H., Sato, K., Sase, H. et al. Development of science and policy related to acid deposition in East Asia over 30 years. Ambio 51, 1800–1818 (2022). https://doi.org/10.1007/s13280-022-01702-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-022-01702-6

Keywords

Navigation