Skip to main content
Log in

Mitigating Global Warming Potentials of Methane and Nitrous Oxide Gases from Rice Paddies under different irrigation regimes

  • Report
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

A field experiment was conducted in Bangladesh Agricultural University Farm to investigate the mitigating effects of soil amendments such as calcium carbide, calcium silicate, phosphogypsum, and biochar with urea fertilizer on global warming potentials (GWPs) of methane (CH4) and nitrous oxide (N2O) gases during rice cultivation under continuous and intermittent irrigations. Among the amendments phosphogypsum and silicate fertilizer, being potential source of electron acceptors, decreased maximum level of seasonal CH4 flux by 25–27 % and 32–38 % in continuous and intermittent irrigations, respectively. Biochar and calcium carbide amendments, acting as nitrification inhibitors, decreased N2O emissions by 36–40 % and 26–30 % under continuous and intermittent irrigations, respectively. The total GWP of CH4 and N2O gases were decreased by 7–27 % and 6–34 % with calcium carbide, phosphogypsum, and silicate fertilizer amendments under continuous and intermittent irrigations, respectively. However, biochar amendments increased overall GWP of CH4 and N2O gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Akiyama, H., X. Yan, and K. Yagi. 2006. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: Summary of available data. Soil Science and Plant Nutrition 52: 774–787.

    Article  CAS  Google Scholar 

  • Ali, M.A., C.H. Lee, and P.J. Kim. 2008. Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biology and Fertility of Soils 44: 597–604.

    Article  CAS  Google Scholar 

  • Ali, M.A., G. Farouque, M. Haque, and A. Kabir. 2012. Influence of soil amendments on mitigating methane emissions and sustaining rice productivity in paddy soil ecosystems of Bangladesh. Journal of Environmental Science and Natural Resources 5: 179–185.

    Article  Google Scholar 

  • Allison, L.E. 1965. Organic carbon. In Methods of soil analysis, part 2, ed. C.A. Black, D.D. Evans, J.L. White, L.E. Ensminger, and F.E. Clark, 1367–1376. Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Amon, B., T.T. Amon, G. Moitzi, and J. Boxberger. 2002. Nitrous oxide emissions from agriculture and mitigation options N2O emission aus der Landwirtschaft und Minderungsmoglichkeiten. Paper presented at Nussdorfel Laende A-1190, Vienna, Austria, 29–31.

  • Aulakh, M.S., K. Singh, and J. Doran. 2001. Effects of 4-amino 1,2,4 triazole, dicyandiamide and encapsulated calcium carbide on nitrification inhibition in a subtropical soil under upland and flooded conditions. Biology and Fertility of Soils 33: 258–263.

    Article  CAS  Google Scholar 

  • Balesdent, J., C. Chenu, and M. Balabane. 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Research 53: 215–230.

    Article  Google Scholar 

  • Bhatia, A., H. Pathak, N. Jain, P.K. Singh, and A.K. Singh. 2005. Global warming potential of manure mended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39: 6976–6984.

    Article  CAS  Google Scholar 

  • Bronson, K.F., and A.R. Mosier. 1991. Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane, and carbon dioxide emissions from flooded rice. Biology and Fertility of Soils 11: 116–120.

    Article  CAS  Google Scholar 

  • Bruno, G., L. Johannes, and Z. Wolfgang. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal. Biology and Fertility of Soils 35: 219–230.

    Article  Google Scholar 

  • Bruun, E.W., D. Muller Stover, P. Ambus, and H. Hauggaard-Nielsen. 2011. Application of biochar to soil and N2O emissions: Potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. European Journal of Soil Science 62: 581–589.

    Article  CAS  Google Scholar 

  • Cheng, C.H., J. Lehmann, and M.H. Engelhard. 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72: 1598–1610.

    Article  CAS  Google Scholar 

  • Clough, T.J., J.E. Bertram, J.L. Ray, M. Condron, M. O’Callaghan, P.R. Sherlock, and N.S. Wells. 2010. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Science Society of America Journal 74: 852–860.

    Article  CAS  Google Scholar 

  • Conrad, R. 1996. Soil micro-organisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiological Reviews 60: 609–640.

    CAS  Google Scholar 

  • Davidson, E.A., W.T. Swank, and T.O. Perry. 1986. Distinguishing between nitrification and denitrification as source of gaseous nitrogen production in soil. Applied Environmental Microbiology 52: 1280–1286.

    Google Scholar 

  • Denier van Der Gon, H.A.C., M.J. Kropff, N. van Breemen, R. Wassmann, R.S. Lantin, E. Aduna, and T.M. Corton. 2002. Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proceedings of the National Academy of Sciences of the United States of America 99: 12021–12024.

    Article  CAS  Google Scholar 

  • Dominic, W., E. James, F. Amonette, S.P. Alayne, J. Lehmann, and J. Stephen. 2010. Sustainable biochar to mitigate global climate change. Nature Communications. doi:10.1038/ncomms1053.

    Google Scholar 

  • Doran, J.W., and M.S. Smith. 1987. Organic matter management and utilisation of soil and fertilizer nutrients. In Soil fertility and organic matter as critical components of production systems, ed. R.F. Follett, J.W.B. Stewart, and C.V. Cole, 53–72. Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland. 2007. Changes in atmospheric constituents and in radiative forcing. In Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, 130–234. Cambridge: Cambridge University Press.

  • Frolking, S., C. Li, R. Braswell, and J. Fauglestvedt. 2004. Short- and long-term greenhouse gas and radiative forcing impacts of changing water management in Asia rice paddies. Global Change Biology 10: 1180–1196.

    Article  Google Scholar 

  • Graedel, T.E., J. Paul, and W.H. Crutzen. 1992. Atmospheric change, an earth system perspective. New York: Freeman and Company. 446.

    Google Scholar 

  • Hou, A.X., G.X. Chen, Z.P. Wang, O. Van Cleemput, and W.H. Patrick Jr. 2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society of American Journal 64: 2180–2186.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 1995. The science of climate change: Climate change, impacts, adaptations and mitigation of climate change. In Scientific technical analysis, ed. I.T. Houghton, F. Meira, L.G. Callander, B.A. Harris, A. Kattenberg, and K. Maskell. Cambridge: Cambridge University Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2001. The Third Assessment Report. In Climate change 2001. The scientific basis of climate, ed. I.T. Houghton, F. Meira, L.G. Callander, B.A. Harris, A. Kattenberg, and K. Maskell. Cambridge: Cambridge University Press.

    Google Scholar 

  • Inubushi, K., H. Wada, and Y. Takai. 1984. Easily decomposable organic matter in paddy soil. Soil Science and Plant Nutrition 30: 198–1894.

    Google Scholar 

  • Jackel, U., and S. Schnell. 2000. Suppression of methane emission from rice paddies by ferric iron fertilization. Soil Biology & Biochemistry 32: 1811–1814.

    Article  CAS  Google Scholar 

  • Johannes, L. 2007. Bio-energy in the Black. Frontiers in Ecology and the Environment 5: 381–387.

    Article  Google Scholar 

  • Kashif, S.R., M. Yaseen, M. Arshad, and M. Abbas. 2007. Evaluation of calcium carbide as a soil amendment to improve nitrogen economy of soil and yield of okra. Soil and Environment 26: 69–74.

    Google Scholar 

  • Keeney, D.R., and D.W. Nelson. 1982. Nitrogen inorganic forms. In Methods of soil analysis, part 2: Chemical and microbiological properties, ed. A.L. Page, R.H. Miller, and D.R. Keeney, 643–698. Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Kristiina, K., T. Matilla, B. Irina, and R. Kristiina. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-results from a short-term pilot field study. Agriculture, Ecosystems & Environment 140: 309–313.

    Article  Google Scholar 

  • Kumada, K., and T. Asami. 1958. A new method for determining ferrous iron in paddy soils. Soil Plant Food 3: 187–193.

    Article  CAS  Google Scholar 

  • Lehmann, C.J., and M. Rondon. 2006. Bio-char soil management on highly-weathered soils in the tropics. In Biological approaches to sustainable soil systems, ed. N.T. Uphoff, 517–530. Boca Raton, CRC Press.

  • Liang, B., J. Lehmann, D. Solomon, J. Kinyan, J. Grossman, B. O’Neill, J.O. Skjemstad, J. Thies, F.J. Luizao, J. Petersen, and E.G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70: 1719–1730.

    Article  CAS  Google Scholar 

  • Loeppert, R.H., and W.P. Inskeep. 1996. Iron. In Methods of soil analysis, part 3, chemical methods, ed. D.L. Sparks, A.L. Page, R.H. Loeppert, C.T. Johnston, M.E. Sumner, and J.M. Bigham, 639–664. Madison, WI: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Mosier, A.R., A.D. Halvorson, C.A. Reule, and X.J. Liu. 2006. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. Journal of Environmental Quality 35: 1584–1598.

    Article  CAS  Google Scholar 

  • RDA, Rural Development Administration. 1988. Method of soil chemical analysis. National Institute 7 of Agricultural Science and Technology, Suwon, Korea.

  • Reddy, K.R., M.R. Overcash, R. Khaleel, and P.W. Westerman. 1980. Phosphorus adsorption–desorption characteristics of two soils utilized for disposal of animal wastes. Journal of Environmental Quality 9: 86–92.

    Article  CAS  Google Scholar 

  • Roberts, K.G., A.G. Brent, J. Stephen, R.S. Norman, and J. Lehmann. 2010. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environmental Science and Technology 44: 827–833.

    Article  CAS  Google Scholar 

  • Robertson, G.P., and P.R. Grace. 2004. Greenhouse gas fluxes in tropical and temperate agriculture: The need for a full-cost accounting of global warming potentials. Environment, Development and Sustainability 6: 51–63.

    Article  Google Scholar 

  • Rolston, D.E. 1986. Gas flux. In Methods of soil analysis, part 1, 2nd edn, Agronomy monograph 9, ed. A. Klute, 1103–1119. Madison, WI: ASA and SSSA.

  • Rondon, M., J. A. Ramirez, and J. Lehmann. 2005. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. Paper read at proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration, March 21–24, 2005, at Baltimore, USA.

  • SAS/STAT User’s guide. 1990. ACECLUS-FREQ, version 6, 4th edn, vol. 1. Cary, NC: SAS Institute, Inc.

  • Synder, C.S., T.W. Bruulsema, T.L. Jensen, and P.E. Fixen. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment 133: 247–266.

    Article  Google Scholar 

  • Wang, Y., and Y. Wang. 2003. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Advance Atmospheric Science 20: 842–844.

    Article  Google Scholar 

  • Wang, J., M. Zhang, Z. Xiong, P. Liu, and G. Pan. 2011. Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biology and Fertility of Soils. doi:10.1007/s00374-011-0595-8.

    Google Scholar 

  • Wang, J., X. Pan, Y. Liu, and X.Z. Xiong. 2012. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil. doi:1007/s11104-012-1250-3.

    Google Scholar 

  • Xiong, Z.Q., G.X. Xing, and Z.L. Zhu. 2007. Nitrous oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere 17: 146–155.

    Article  CAS  Google Scholar 

  • Yagi, K., and K. Minami. 1990. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Science & Plant Nutrition 36: 599–610.

    Article  CAS  Google Scholar 

  • Yanai, Y., K. Toyota, and M. Okazaki. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science & Plant Nutrition 53: 181–188.

    Article  CAS  Google Scholar 

  • Yaseen, M., M. Arshad, and A. Khalid. 2006. Effect of acetylene and ethylene gases released from encapsulated CaC2 on growth and yield of wheat and cotton. Pedobiologia 50: 405–411.

    Article  CAS  Google Scholar 

  • Zhang, A., L. Cui, G. Pan, L. Li, Q. Hussain, X. Zhang, J. Zheng, and C. David. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment 139: 469–475.

    Article  CAS  Google Scholar 

  • Zhang, A., R. Bian, G. Pan, L. Cui, Q. Hussain, L. Lee, J. Zheng, X. Zhang, X. Han, and X. Yu. 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of two consecutive rice growing cycles. Field Crops Research 153: 160.

    Google Scholar 

  • Zheng, X., B. Mei, Y. Wang, B. Xie, Y. Wang, H. Dong, H. Xu, G. Chen, Z. Cai, J. Yue, J. Gu, F. Su, J. Zou, and J. Zhu. 2008. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant and Soil 11: 211–234.

    Article  Google Scholar 

  • Zou, J., Y. Huang, J. Jiang, X. Zheng, and R.L. Sass. 2005a. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Global Biogeochemical Cycles 19: GB2021.

    Article  Google Scholar 

  • Zou, J., Y. Huang, Y. Lu, X. Zheng, and Y. Wang. 2005b. Direct emission factor for N2O from rice–winter wheat rotation systems in southeast China. Atmospheric Environment 39: 4755–4765.

    Article  CAS  Google Scholar 

  • Zou, J., Y. Huang, X. Zheng, and Y. Wang. 2007. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment 41: 8032–8042.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Muhammad Hussain Central Lab., BAU, Bangladesh and Environmental Soil Chemistry Lab., Gyeongsang National University, Republic of Korea for their analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aslam Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.A., Hoque, M.A. & Kim, P.J. Mitigating Global Warming Potentials of Methane and Nitrous Oxide Gases from Rice Paddies under different irrigation regimes. AMBIO 42, 357–368 (2013). https://doi.org/10.1007/s13280-012-0349-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0349-3

Keywords

Navigation